金融风控机器学习第二十六天---拜师课堂 机器学习算法--数据清理

今天总体跟着视频学习了一下大概流程,重中之重是前期的数据准备和清洗
我觉得今天的重点在于 6.3的py文件
如果不理解的我会在下面查询后增加注释

#!/usr/bin/python

-*- encoding: utf-8

import numpy as np
import pandas as pd

from fuzzywuzzy import fuzz

from fuzzywuzzy import process

def enum_row(row):
print (row[‘state’])

def find_state_code(row):
if row[‘state’] != 0:
print (process.extractOne(row[‘state’], states, score_cutoff=80))

def capital(str):
return str.capitalize()

def correct_state(row):
if row[‘state’] != 0:
state = process.extractOne(row[‘state’], states, score_cutoff=80)
if state:
state_name = state[0]
return ’ ‘.join(map(capital, state_name.split(’ ')))
return row[‘state’]

def fill_state_code(row):
if row[‘state’] != 0:
state = process.extractOne(row[‘state’], states, score_cutoff=80)
if state:
state_name = state[0]
return state_to_code[state_name]
return ‘’

if name == “main”:
pd.set_option(‘display.width’, 200)
data = pd.read_excel(‘sales.xlsx’, header=0)
print(data)
print ‘data.head() = \n’, data.head()
print ‘data.tail() = \n’, data.tail()
print ‘data.dtypes = \n’, data.dtypes
print ‘data.columns = \n’, data.columns
for c in data.columns:
print ©
print
data[‘total’] = data[‘Jan’] + data[‘Feb’] + data[‘Mar’]
print data.head()
print (data[‘Jan’].sum())
print data[‘Jan’].min()
print data[‘Jan’].max()
print data[‘Jan’].mean()

print '============='
# 添加一行
s1 = data[['Jan', 'Feb', 'Mar', 'total']].sum()
print (s1)
s2 = pd.DataFrame(data=s1)
print (s2)
print (s2.T)
print s2.T.reindex(columns=data.columns)
# 即:
s = pd.DataFrame(data=data[['Jan', 'Feb', 'Mar', 'total']].sum()).T
s = s.reindex(columns=data.columns, fill_value=0)
print s
data = data.append(s, ignore_index=True)
data = data.rename(index={15:'Total'})
print data.tail()

# apply的使用
print '==============apply的使用=========='
data.apply(enum_row, axis=1)

state_to_code = {"VERMONT": "VT", "GEORGIA": "GA", "IOWA": "IA", "Armed Forces Pacific": "AP", "GUAM": "GU",
                 "KANSAS": "KS", "FLORIDA": "FL", "AMERICAN SAMOA": "AS", "NORTH CAROLINA": "NC", "HAWAII": "HI",
                 "NEW YORK": "NY", "CALIFORNIA": "CA", "ALABAMA": "AL", "IDAHO": "ID",
                 "FEDERATED STATES OF MICRONESIA": "FM",
                 "Armed Forces Americas": "AA", "DELAWARE": "DE", "ALASKA": "AK", "ILLINOIS": "IL",
                 "Armed Forces Africa": "AE", "SOUTH DAKOTA": "SD", "CONNECTICUT": "CT", "MONTANA": "MT",
                 "MASSACHUSETTS": "MA",
                 "PUERTO RICO": "PR", "Armed Forces Canada": "AE", "NEW HAMPSHIRE": "NH", "MARYLAND": "MD",
                 "NEW MEXICO": "NM",
                 "MISSISSIPPI": "MS", "TENNESSEE": "TN", "PALAU": "PW", "COLORADO": "CO",
                 "Armed Forces Middle East": "AE",
                 "NEW JERSEY": "NJ", "UTAH": "UT", "MICHIGAN": "MI", "WEST VIRGINIA": "WV", "WASHINGTON": "WA",
                 "MINNESOTA": "MN", "OREGON": "OR", "VIRGINIA": "VA", "VIRGIN ISLANDS": "VI",
                 "MARSHALL ISLANDS": "MH",
                 "WYOMING": "WY", "OHIO": "OH", "SOUTH CAROLINA": "SC", "INDIANA": "IN", "NEVADA": "NV",
                 "LOUISIANA": "LA",
                 "NORTHERN MARIANA ISLANDS": "MP", "NEBRASKA": "NE", "ARIZONA": "AZ", "WISCONSIN": "WI",
                 "NORTH DAKOTA": "ND",
                 "Armed Forces Europe": "AE", "PENNSYLVANIA": "PA", "OKLAHOMA": "OK", "KENTUCKY": "KY",
                 "RHODE ISLAND": "RI",
                 "DISTRICT OF COLUMBIA": "DC", "ARKANSAS": "AR", "MISSOURI": "MO", "TEXAS": "TX", "MAINE": "ME"}
states = state_to_code.keys()
print fuzz.ratio('Python Package', 'PythonPackage')
print process.extract('Mississippi', states)
print process.extract('Mississipi', states, limit=1)
print process.extractOne('Mississipi', states)
data.apply(find_state_code, axis=1)

print 'Before Correct State:\n', data['state']
data['state'] = data.apply(correct_state, axis=1)
print 'After Correct State:\n', data['state']
data.insert(5, 'State Code', np.nan)
data['State Code'] = data.apply(fill_state_code, axis=1)
print data

# group by
print '==============group by================'
print data.groupby('State Code')
print 'All Columns:\n'
print data.groupby('State Code').sum()
print 'Short Columns:\n'
print data[['State Code', 'Jan', 'Feb', 'Mar', 'total']].groupby('State Code').sum()

# 写入文件
data.to_excel('sales_result.xls', sheet_name='Sheet1', index=False)

由于是python2 不过大部分代码完成的意思可以知道!

数据处理真的是在建立模型前非常耗时与重要的一步!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值