留数定理笔记

留数理论

留数理论 f f f a a a点全纯 【 2 】 ^{【2】} 2,那么对于 a a a点邻域中的任意可求长闭曲线 γ \gamma γ,都有 ∮ γ f ( z ) d z = 0 \oint_\gamma f(z)dz=0 γf(z)dz=0

如果 a a a f f f孤立奇点 【 3 】 ^{【3】} 3,那么上述积分不一定总等于零,且积分值只与 f f f a a a有关.而与 γ \gamma γ无关。

f f f a a a点邻域中的 L a u r e n t 展 开 式 \color {blue}Laurent展开式 Laurent 【 4 】 ^{【4】} 4为:
f ( z ) = ∑ n = − ∞ ∞ c n ( z − a ) n c n = 1 2 π i ∮ γ f ( ζ ) ( ζ − a ) n + 1 d ζ , n = 0 ,   ± 1 ,   ± 2 \begin{aligned} &f(z)=\sum^\infty_{n=-\infty}c_n(z-a)^n\\ &c_n=\frac1{2\pi i}\oint_\gamma\frac{f(\zeta)}{{(\zeta-a})^{n+1}}d\zeta,\quad n=0,\ \pm1,\ \pm2 \end{aligned} f(z)=n=cn(za)ncn=2πi1γ(ζa)n+1f(ζ)dζ,n=0, ±1, ±2 n = − 1 n=-1 n=1时,有: c − 1 = 1 2 π i ∮ γ f ( ζ ) d ζ c_{-1}=\frac1{2\pi i}\oint_\gamma f(\zeta)d\zeta c1=2πi1γf(ζ)dζ

c − 1 c_{-1} c1 f f f a a a点的留数: R e s [ f ;   a ] = c − 1 Res[f;\ a]=c_{-1} Res[f; a]=c1

∴   ∮ γ f ( z ) d z = 2 π i   R e s [ f ;   a ] ,其中 γ = { z : ∣ z − a ∣ = ρ } , 0 < ρ < r 若 z = ∞ 是孤立奇点,即: R < ∣ z ∣ < ∞ 内 全 纯 , 则 z = ∞ 处 留 数 为 : R e s [ f ;   ∞ ] = − 1 2 π i ∮ γ f ( z ) d z γ = { z : ∣ z ∣ = ρ } , R < ρ < ∞ \therefore\ \oint_\gamma f(z)dz=2\pi i\ Res[f;\ a]\text{,其中}\gamma=\{z:|z-a|=\rho\},0<\rho<r\\ 若z=\infty\text{是孤立奇点,即:}R<|z|<\infty内全纯,则z=\infty处留数为:Res[f;\ \infty]=-\frac1{2\pi i}\oint_\gamma f(z)dz\\ \gamma=\{z:|z|=\rho\},R<\rho<\infty  γf(z)dz=2πi Res[f; a],其中γ={z:za=ρ},0<ρ<rz=是孤立奇点,即:R<z<z=Res[f; ]=2πi1γf(z)dzγ={z:z=ρ},R<ρ<

L a u r e n t Laurent Laurent展开式有时并不那么容易得到,以下方法仍可得到留数:

  • a a a f f f一阶极点,则: R e s [ f ;   a ] = lim ⁡ z → a ( z − a ) f ( z ) Res[f;\ a]=\lim_{z\rightarrow a}(z-a)f(z) Res[f; a]=zalim(za)f(z)
  • a a a f f f m m m阶极点,则: R e s [ f ;   a ] = 1 ( m − 1 ) ! lim ⁡ z → a d m − 1 d z m − 1 [ ( z − a ) m f ( z ) ] Res[f;\ a]=\frac1{(m-1)!}\lim_{z\rightarrow a}\frac{d^{m-1}}{dz^{m-1}}[(z-a)^mf(z)] Res[f; a]=(m1)!1zalimdzm1dm1[(za)mf(z)]
  • f = g h f=\frac g h f=hg,其中 g 、 h g、h gh都在 a a a点全纯,且 g ( a ) ≠ 0 , h ( a ) = 0 , h ′ ( a ) ≠ 0 g(a)\neq0,h(a)=0,h^\prime(a)\neq0 g(a)=0,h(a)=0,h(a)=0,那么: R e s [ f ;   a ] = g ( a ) h ′ ( a ) Res[f;\ a]=\frac{g(a)}{h^\prime(a)} Res[f; a]=h(a)g(a)

注意:若为本性极点 【 3 】 ^{【3】} 3,则只能通过 L a u r e n t Laurent Laurent展开得到留数

留数基本定理

定理一: D D D为复平面上有界区域,边界 γ \gamma γ由若干简单闭曲线组成,若 f f f D D D内除孤立奇点 z 1 , z 2 , ⋯   , z n z_1,z_2,\cdots,z_n z1,z2,,zn外全纯,在闭区域 D ‾ \overline D D z 1 , z 2 , ⋯   , z n z_1,z_2,\cdots,z_n z1,z2,,zn外连续,那么: ∮ γ f ( z ) d z = 2 π i   ∑ k = 1 n R e s [ f ;   z k ] 留数定理 \oint_\gamma f(z)dz=2\pi i\ \sum^n_{k=1}Res[f;\ z_k]\quad\color {blue}\text{留数定理} γf(z)dz=2πi k=1nRes[f; zk]留数定理

定理二: f f f在复数域 C \color{blue}\boldsymbol C C中除 z 1 , z 2 , ⋯   , z n z_1,z_2,\cdots,z_n z1,z2,,zn外全纯,则 f f f z 1 , z 2 , ⋯   , z n z_1,z_2,\cdots,z_n z1,z2,,zn z = ∞ z=\infty z=处留数之和为零

用留数算积分

1、 ∫ − ∞ + ∞ f ( x ) d x \boldsymbol \color{blue}\int^{+\infty}_{-\infty}f(x)dx +f(x)dx型积分

定理一: f f f在上半平面 { z : I m   z > 0 } \{z:\mathrm {Im}\ z>0\} {z:Im z>0}内除 z 1 , z 2 , ⋯   , z n z_1,z_2,\cdots,z_n z1,z2,,zn外全纯,在 { z : I m   z > 0 } \{z:\mathrm {Im}\ z>0\} {z:Im z>0}内除 z 1 , z 2 , ⋯   , z n z_1,z_2,\cdots,z_n z1,z2,,zn外连续,如果 lim ⁡ z → ∞ z f ( z ) = 0 \lim_{z\rightarrow\infty}zf(z)=0 limzzf(z)=0,那么 ∫ − ∞ + ∞ f ( x ) d x = 2 π i   ∑ k = 1 n R e s [ f ;   z k ] \int^{+\infty}_{-\infty}f(x)dx=2\pi i\ \sum^n_{k=1}Res[f;\ z_k] +f(x)dx=2πi k=1nRes[f; zk]

推论一: P 、 Q P、Q PQ分别为 m m m n n n阶既约(不可约分)多项式,并且 m ≤ n − 2 m\leq n-2 mn2 Q Q Q无实根,那么 ∫ − ∞ + ∞ P ( x ) Q ( x ) d x = 2 π i   ∑ k = 1 n R e s [ P ( x ) Q ( x ) ;   z k ] \int^{+\infty}_{-\infty}\frac{P(x)}{Q(x)}dx=2\pi i\ \sum^n_{k=1}Res\left[\frac{P(x)}{Q(x)};\ z_k\right] +Q(x)P(x)dx=2πi k=1nRes[Q(x)P(x); zk]

J o r d a n Jordan Jordan引理: f f f { z : R 0 ≤ ∣ z ∣ < ∞ , I m   z ≥ 0 } \{z:R_0\leq|z| \lt\infty,\mathrm{Im}\ z\geq0\} {z:R0z<,Im z0}上连续,且 lim ⁡ z → ∞ Im ⁡ z ≥ 0 f ( z ) = 0 \lim _{z \rightarrow \infty \atop \operatorname{Im} z \geq 0} f(z)=0 limImz0zf(z)=0,则对任意 a > 0 a>0 a>0,有 lim ⁡ R → ∞ ∫ Γ R e i a z f ( z ) d z = 0 \lim_{R\rightarrow \infty} \int_{\Gamma_R}e^{iaz}f(z)dz=0 RlimΓReiazf(z)dz=0 Γ R = { z : z = R e i θ ,   0 ≤ θ ≤ π , R ≥ R 0 } \Gamma_R=\{z:z=Re^{i\theta},\ 0\leq\theta \leq \pi,R\geq R_0\} ΓR={z:z=Reiθ, 0θπ,RR0}

小圆弧引理: f f f在扇状区域 G = { z : z = a + ρ e i θ , 0 < ρ ≤ ρ 0 , θ 0 ≤ θ ≤ θ 0 + α } G=\{z:z=a+\rho e^{i\theta},0\lt \rho\leq \rho_0,\theta_0 \leq \theta \leq\theta_0+\alpha\} G={z:z=a+ρeiθ,0<ρρ0,θ0θθ0+α}内连续,如果 lim ⁡ z → a ( z − a ) f ( z ) = A \lim_{z\rightarrow a}(z-a)f(z)=A limza(za)f(z)=A,那么 lim ⁡ ρ → 0 ∫ γ ρ f ( z ) d z = i A α ( α 为 弧 度 ) \lim_{\rho\rightarrow0}\int_{\gamma_\rho}f(z)dz=iA\alpha\quad(\color{blue}\alpha为弧度) ρ0limγρf(z)dz=iAα(α)

γ ρ = { z : z = a + ρ i θ , θ 0 ≤ θ ≤ θ 0 + α } \gamma_\rho=\{z:z=a+\rho^{i\theta},\theta_0\leq\theta\leq\theta_0+\alpha\} γρ={z:z=a+ρiθ,θ0θθ0+α},方向:沿幅角增加的方向

定理二: f f f在上半平面 { z : I m   z > 0 } \{z:\mathrm {Im}\ z>0\} {z:Im z>0}内除 z 1 , z 2 , ⋯   , z n z_1,z_2,\cdots,z_n z1,z2,,zn外全纯,在 { z : I m   z > 0 } \{z:\mathrm {Im}\ z>0\} {z:Im z>0}内除 z 1 , z 2 , ⋯   , z n z_1,z_2,\cdots,z_n z1,z2,,zn外连续,如果 lim ⁡ z → ∞ f ( z ) = 0 \lim_{z\rightarrow\infty}f(z)=0 limzf(z)=0,那么对任意 a > 0 a\gt0 a>0,有 ∫ − ∞ + ∞ e i a x f ( x ) d x = 2 π i   ∑ k = 1 n R e s [ e i a x f ( z ) ;   z k ] \int^{+\infty}_{-\infty}e^{iax}f(x)dx=2\pi i\ \sum^n_{k=1}Res[e^{iax}f(z);\ z_k] +eiaxf(x)dx=2πi k=1nRes[eiaxf(z); zk] J o r d a n Jordan Jordan引理证得

推论二:定理二条件下,有 ∫ − ∞ + ∞ f ( x ) c o s a x d x = R e { 2 π i   ∑ k = 1 n R e s [ e i a z f ( z ) ;   z k ] } ∫ − ∞ + ∞ f ( x ) s i n a x d x = l m { 2 π i   ∑ k = 1 n R e s [ e i a z f ( z ) ;   z k ] } \int^{+\infty}_{-\infty}f(x)cosaxdx=\mathrm {Re}\left\{2\pi i\ \sum^n_{k=1}Res[e^{iaz}f(z);\ z_k]\right\}\\ \int^{+\infty}_{-\infty}f(x)sinaxdx=\mathrm {lm}\left\{2\pi i\ \sum^n_{k=1}Res[e^{iaz}f(z);\ z_k]\right\} +f(x)cosaxdx=Re{2πi k=1nRes[eiazf(z); zk]}+f(x)sinaxdx=lm{2πi k=1nRes[eiazf(z); zk]}

2、 ∫ 0 + ∞ f ( x ) d x \boldsymbol \color{blue}\int^{+\infty}_{0}f(x)dx 0+f(x)dx型积分

大圆弧引理: f f f在大圆弧 C R = { z : z = a + R e i θ , 0 < ρ ≤ ρ 0 , θ 0 ≤ θ ≤ θ 0 + a } C_R=\{z:z=a+R e^{i\theta},0\lt \rho\leq \rho_0,\theta_0 \leq \theta \leq\theta_0+a\} CR={z:z=a+Reiθ,0<ρρ0,θ0θθ0+a}内连续,
如果 lim ⁡ z → + ∞ ( z − a ) f ( z ) = A \lim_{z\rightarrow +\infty}(z-a)f(z)=A limz+(za)f(z)=A,那么
lim ⁡ R → + ∞ ∫ C R f ( z ) d z = i A a \lim_{R\rightarrow+\infty}\int_{C_R}f(z)dz=iAa R+limCRf(z)dz=iAa γ ρ = { z : z = a + R e i θ , θ 0 ≤ θ ≤ θ 0 + a } \gamma_\rho=\{z:z=a+Re^{i\theta},\theta_0\leq\theta\leq\theta_0+a\} γρ={z:z=a+Reiθ,θ0θθ0+a},方向:沿幅角增加的方向

定理三:若单值函数 f ( z ) f(z) f(z)在复平面 C \color{blue}\boldsymbol C C上除 z 1 , z 2 , ⋯   , z n z_1,z_2,\cdots,z_n z1,z2,,zn外全纯,且这些奇点均不在包括原点的正实轴上, z = ∞ z=\infty z= f ( x ) f(x) f(x) m m m阶零点( m ≥ 1 m\geq1 m1),那么 ∫ − ∞ + ∞ x p f ( x ) d x = 2 π i 1 − e 2 p π i   ∑ k = 1 n R e s [ z p f ( z ) ;   z k ] ( − 1 < p < 0 ) \int^{+\infty}_{-\infty}x^pf(x)dx=\frac{2\pi i}{1-e^{2p\pi i}}\ \sum^n_{k=1}Res[z^pf(z);\ z_k] \quad(-1<p<0) +xpf(x)dx=1e2pπi2πi k=1nRes[zpf(z); zk](1<p<0)(在正实轴上取实值的一个单值解析分支内计算留数)

推论三:假定相关积分均存在,则有
∫ − 1 1 ( 1 + x 1 − x ) m − 1 f ( x ) d x = 2 ∫ 0 + ∞ x m − 1 ( x + 1 ) 2 f ( x − 1 x + 1 ) d x ∫ − 1 1 ( 1 − x 2 ) m − 1 h ( x ) d x = 2 2 m − 1 ∫ 0 + ∞ x m − 1 ( x + 1 ) 2 m h ( x − 1 x + 1 ) d x \int^{1}_{-1}{\left(\frac{1+x}{1-x}\right)}^{m-1}f(x)dx=2 \int^{+\infty}_{0}\frac{x^{m-1}}{{(x+1)}^2}f{\left(\frac{x-1}{x+1}\right)}dx\\[12pt] \int^{1}_{-1}(1-x^2)^{m-1}h(x)dx=2^{2m-1} \int^{+\infty}_{0}\frac{x^{m-1}}{{(x+1)}^{2m}}h{\left(\frac{x-1}{x+1}\right)}dx 11(1x1+x)m1f(x)dx=20+(x+1)2xm1f(x+1x1)dx11(1x2)m1h(x)dx=22m10+(x+1)2mxm1h(x+1x1)dx这样可将上述不等式左边积分转化为多值函数围道积分

定理四:若单值函数 f ( z ) f(z) f(z)在复平面 C \color{blue}\boldsymbol C C上除 z 1 , z 2 , ⋯   , z n z_1,z_2,\cdots,z_n z1,z2,,zn外全纯,且这些奇点均不在包括原点的正实轴上, z = ∞ z=\infty z= f ( x ) f(x) f(x) m m m阶零点( m ≥ 2 m\geq2 m2),那么
∫ 0 + ∞ f ( x ) d x = 1 2 π   I m ∑ k = 1 n R e s [ f ( z ) l n 2 z ;   z k ] ∫ 0 + ∞ f ( x ) l n x d x = − 1 2   R e ∑ k = 1 n R e s [ f ( z ) l n 2 z ;   z k ] \int^{+\infty}_{0}f(x)dx=\frac{1}{2\pi}\ \mathrm {Im}\sum^n_{k=1}Res[f(z)\mathrm {ln}^2z;\ z_k]\\[9pt] \int^{+\infty}_{0}f(x)\mathrm{ln}xdx=-\frac{1}{2}\ \mathrm {Re}\sum^n_{k=1}Res[f(z)\mathrm {ln}^2z;\ z_k] 0+f(x)dx=2π1 Imk=1nRes[f(z)ln2z; zk]0+f(x)lnxdx=21 Rek=1nRes[f(z)ln2z; zk]

定理五:(上半平面留数)若单值函数 f ( x ) f(x) f(x)是偶函数, f ( x ) f(x) f(x)在上半平面除去 z 1 , z 2 , ⋯   , z n z_1,z_2,\cdots,z_n z1,z2,,zn外全纯,且这些奇点均不在包括原点的正实轴上,存在常数 M M M,当 ∣ z ∣ |z| z充分大时有 ∣ f ( x ) ∣ ≤ M z m ,   m ≥ 2 |f(x)|\leq\frac M{z^m},\ m \geq2 f(x)zmM, m2,那么
∫ 0 + ∞ f ( x ) d x = 2   R e ∑ k = 1 n R e s [ f ( z ) l n z ;   z k ] ∫ 0 + ∞ f ( x ) l n x d x = − π   I m ∑ k = 1 n R e s [ f ( z ) l n z ;   z k ] \int^{+\infty}_{0}f(x)dx=2\ \mathrm {Re}\sum^n_{k=1}Res[f(z)\mathrm {ln}z;\ z_k]\\[9pt] \int^{+\infty}_{0}f(x)\mathrm{ln}xdx=-\pi\ \mathrm {Im}\sum^n_{k=1}Res[f(z)\mathrm {ln}z;\ z_k] 0+f(x)dx=2 Rek=1nRes[f(z)lnz; zk]0+f(x)lnxdx=π Imk=1nRes[f(z)lnz; zk]

定理六: P 、 Q P、Q PQ分别为 m m m n n n阶既约(不可约分)多项式,并且 m ≤ n − 2 m\leq n-2 mn2 Q ( z ) Q(z) Q(z)无非负实根,那么 ∫ 0 + ∞ P ( x ) Q ( x ) d x = −   ∑ k = 1 n R e s [ P ( x ) Q ( x ) l n z ;   z k ] \int^{+\infty}_{0}\frac{P(x)}{Q(x)}dx=-\ \sum^n_{k=1}Res\left[\frac{P(x)}{Q(x)}\mathrm {ln}z;\ z_k\right] 0+Q(x)P(x)dx= k=1nRes[Q(x)P(x)lnz; zk]

3、 ∫ a b f ( x ) d x \boldsymbol \color{blue}\int^{b}_{a}f(x)dx abf(x)dx型积分

定理七:(全平面留数)若单值函数 f ( x ) f(x) f(x)在实轴上取实值,在复平面 C \color{blue}\boldsymbol C C上除 z 1 , z 2 , ⋯   , z n z_1,z_2,\cdots,z_n z1,z2,,zn外全纯,且这些奇点均不 [ 0 , 1 ] [0,1] [0,1]上, f ( z ) f(z) f(z)的分母至少比分子高3次,那么
上半平面 { z : I m   z > 0 } \{z:\mathrm {Im}\ z>0\} {z:Im z>0}内除 z 1 , z 2 , ⋯   , z n z_1,z_2,\cdots,z_n z1,z2,,zn外全纯,在 { z : I m   z > 0 } \{z:\mathrm {Im}\ z>0\} {z:Im z>0}内除 z 1 , z 2 , ⋯   , z n z_1,z_2,\cdots,z_n z1,z2,,zn外连续,如果 lim ⁡ z → ∞ f ( z ) = 0 \lim_{z\rightarrow\infty}f(z)=0 limzf(z)=0,那么对任意 a > 0 a\gt0 a>0,有
∫ 0 1 x m ( 1 − x ) n − m n f ( x ) d x = 2 π i 1 − e 2 m π n i ∑ k = 1 n Res ⁡ [ z m ( 1 − z ) n − m n f ( z ) ;   z k ] \int_{0}^{1} \sqrt[n]{x^{m}(1-x)^{n-m}} f(x) d x=\frac{2 \pi i}{1-e^{\frac{2 m \pi}{n} i}} \sum_{k=1}^{n} \operatorname{Res}\left[\sqrt[n]{z^{m}(1-z)^{n-m}} f(z) ;\ z_{k}\right] 01nxm(1x)nm f(x)dx=1en2mπi2πik=1nRes[nzm(1z)nm f(z); zk] x m ( 1 − x ) n − m n \sqrt[n]{x^{m}(1-x)^{n-m}} nxm(1x)nm 为某一单值连续函数,该分支在割线上沿取实值)

定理八:(圆环域留数)若单值函数 f ( x ) f(x) f(x)在实轴上取实值,在复平面 C \color{blue}\boldsymbol C C上除 z 1 , z 2 , ⋯   , z n z_1,z_2,\cdots,z_n z1,z2,,zn外全纯,且这些奇点均不 [ 0 , 1 ] [0,1] [0,1]上, z = ∞ z=\infty z= f ( x ) f(x) f(x)的可取奇点,那么
∫ 0 1 f ( x ) x m ( 1 − x ) n − m n d x = 2 π i 1 − e − 2 m π n i { ∑ k = 1 n Res ⁡ [ f ( z ) h 0 ( z ) ; z k ] + Res ⁡ [ f ( z ) h 0 ( z ) ; ∞ ] } \int_{0}^{1} \frac{f(x)}{\sqrt[n]{x^{m}(1-x)^{n-m}}} d x=\frac{2 \pi i}{1-e^{-\frac{2 m \pi}{n} i}}\left\{\sum_{k=1}^{n} \operatorname{Res}\left[\frac{f(z)}{h_{0}(z)} ; z_{k}\right]+\operatorname{Res}\left[\frac{f(z)}{h_{0}(z)} ; \infty\right]\right\} 01nxm(1x)nm f(x)dx=1en2mπi2πi{k=1nRes[h0(z)f(z);zk]+Res[h0(z)f(z);]}其中 h 0 ( z ) = x m ( 1 − x ) n − m n h_0(z)=\sqrt[n]{x^{m}(1-x)^{n-m}} h0(z)=nxm(1x)nm

定理九:(全平面留数)若单值函数 f ( x ) f(x) f(x)在实轴上取实值,在复平面 C \color{blue}\boldsymbol C C上除 z 1 , z 2 , ⋯   , z n z_1,z_2,\cdots,z_n z1,z2,,zn外全纯,且这些奇点均不 [ a , b ] [a,b] [a,b]上, − 1 < r , s < 1 , s ≠ 0 , 且 r + s -1<r,s<1,s\neq 0,且r+s 1<r,s<1,s=0,r+s是整数,如果
lim ⁡ z → ∞ z r + s + 1 f ( z ) = A ≠ ∞ { \lim _{z \rightarrow \infty} z^{r+s+1} f(z)=A \neq \infty} zlimzr+s+1f(z)=A=

那么:
∫ a b ( x − a ) r ( b − x ) s f ( x ) d x = − A π sin ⁡ ( π s ) + π e − i π s sin ⁡ ( π s ) ∑ k = 1 n Res ⁡ [ ( z − a ) r ( b − z ) s f ( z ) ; z k ] {\int_{a}^{b}(x-a)^{r}(b-x)^{s} f(x) d x=-\frac{A \pi}{\sin (\pi s)}+\frac{\pi}{e^{-i \pi s} \sin (\pi s)} \sum_{k=1}^{n} \operatorname{Res}\left[(z-a)^{r}(b-z)^{s} f(z) ; z_{k}\right]} ab(xa)r(bx)sf(x)dx=sin(πs)Aπ+eiπssin(πs)πk=1nRes[(za)r(bz)sf(z);zk]

参考文献

【1】积分的方法与技巧
【2】全纯函数
【3】孤立奇点
【4】洛朗(Laurent)级数展开

  • 9
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
概率论与数理统计是一门研究随机现象的规律性和统计推断的学科。它的基础是概率论,该理论研究的是随机事件发生的可能性。数理统计则是根据观察到的样本,通过对未知参数的估计和对假设的检验来对总体进行推断。 概率论与数理统计的应用非常广泛,涉及到许多不同的领域。在自然科学中,概率论与数理统计被用来建立和分析模型,解释实验结果,以及进行科学研究。在社会科学和人文科学中,它帮助研究人员通过统计分析来得出结论,并提供可靠的推断和决策依据。在工程领域,概率论与数理统计被用来分析和优化系统的可靠性和性能。 《概率论与数理统计笔记PDF》是一种学习资料,它提供了该学科的基本概念、定理和方法。这份笔记可以帮助读者理解概率论与数理统计的基本原理和应用,并提供实际案例和习题来加深对这些概念的掌握。通过阅读这份笔记,读者可以了解概率、随机变量、概率分布、统计推断等重要概念,以及它们在实际问题中的应用。 这份笔记的PDF格式使得它可以方便地在电子设备上阅读和存储。读者可以自由地选择在自己的电脑、平板电脑或手机上学习,随时随地进行学习。此外,PDF格式还允许读者进行注释和书签,方便他们标记和回顾重要内容。 总之,《概率论与数理统计笔记PDF》是一份有助于理解和掌握概率论与数理统计的学习资料。它提供了基本的概念和方法,并通过实例和习题帮助读者巩固所学知识。同时,它的PDF格式也方便读者在电子设备上学习和存储。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值