科里奥利力/科氏力(Coriolis Force)

非惯性系中观察惯性运动

O \mathbf{O} O 为惯性系, O ′ \mathbf{O}^\prime O 为非惯性系, r \mathbf{r} r r ′ \mathbf{r}^\prime r 分别为物体在两个坐标系中的坐标:
r = ( x y z ) , r ′ = ( x ′ y ′ z ′ ) \mathbf{r}=\left(\begin{array}{l} x \\ y \\ z \end{array}\right), \mathbf{r}^{\prime}=\left(\begin{array}{l} x^{\prime} \\ y^{\prime} \\ z^{\prime} \end{array}\right) r=xyz,r=xyz

A \mathbf{A} A表示旋转矩阵, b \mathbf{b} b 为平移矢量,两者均与时间 t t t 有关,物体在两个坐标系中的位置关系可表示为:
r = A r ′ + b \mathbf{r} = \mathbf{A}\mathbf{r}^{\prime} + \mathbf{b} r=Ar+b

力是一个矢量,只与方向有关
F = A F ′ \mathbf{F} = \mathbf{A}\mathbf{F}^{\prime} F=AF

惯性系中物体的运动是满足牛顿定律
F = m a = m r ¨ \mathbf{F} = m\mathbf{a} = m\ddot{\mathbf{r}} F=ma=mr¨

根据坐标变换关系则有:
A F ′ = m A ¨ r ′ + 2 m A ˙ r ˙ ′ + m A r ¨ + m b ¨ \mathbf{A}\mathbf{F}^{\prime} = m \ddot{\mathbf{A}}\mathbf{r}^{\prime} + 2m\dot{\mathbf{A}}\dot{\mathbf{r}}^{\prime}+m\mathbf{A}\ddot{\mathbf{r}} +m\ddot{\mathbf{b}} AF=mA¨r+2mA˙r˙+mAr¨+mb¨

两边同时乘以 A − 1 \mathbf{A}^{-1} A1得到
F ′ − m A − 1 ( A ¨ r ′ + b ¨ ) ⏟ − 2 m A − 1 A ˙ r ˙ ′ ⏟ = m r ¨ ′ = m a ′ F 1 F 2 \begin{aligned} \mathbf{F}^{\prime} &\underbrace{ - m\mathbf{A}^{-1}(\ddot{\mathbf{A}}\mathbf{r}^{\prime}+\ddot{\mathbf{b}}) } \underbrace{ - 2m\mathbf{A}^{-1} \dot{\mathbf{A}}\dot{\mathbf{r}}^{\prime} }=m\ddot{\mathbf{r}}^{\prime}=m\mathbf{a}^{\prime}\\ &\qquad\qquad\mathbf{F}_1 \qquad\qquad\qquad\mathbf{F}_2 \end{aligned} F mA1(A¨r+b¨) 2mA1A˙r˙=mr¨=maF1F2

于是可得到:
F ′ + F 1 + F 2 = m a ′ \mathbf{F}^{\prime} + \mathbf{F}_1 + \mathbf{F}_2 =m\mathbf{a}^{\prime} F+F1+F2=ma

非惯性系中物体所受到的有效力是由合外力加上 F 1 \mathbf{F}_1 F1 F 2 \mathbf{F}_2 F2 ,前者只与物体的位置有关,而后者只与物体速度有关

例子

例1:匀加速参考系在匀加速的情形下我们有 A = I \mathbf{A}=\mathbf{I} A=I b ¨ = a \ddot{\mathbf{b}}=\mathbf{a} b¨=a以及其中加速度 a \mathbf{a} a为常量.
F 1 = − m a , F 2 = 0 \mathbf{F} _1 =−m\mathbf{a},\mathbf{F} _2 =0 F1=ma,F2=0

例2:匀速转动参考系,设角速度 ω ω ω的方向是沿 z z z轴正方向,即 ω ⃗ = ( 0 , 0 , ω ) \vec{ω}=(0,0,ω) ω =(0,0,ω)

A = ( cos ⁡ ω t sin ⁡ ω t 0 − sin ⁡ ω t cos ⁡ ω t 0 0 0 1 ) , b = 0 A − 1 = ( cos ⁡ ω t − sin ⁡ ω t 0 sin ⁡ ω t cos ⁡ ω t 0 0 0 1 ) A ˙ = ω ( − sin ⁡ ω t cos ⁡ ω t 0 − cos ⁡ ω t − sin ⁡ ω t 0 0 0 0 ) A ¨ = ω 2 ( − cos ⁡ ω t − sin ⁡ ω t 0 sin ⁡ ω t − cos ⁡ ω t 0 0 0 0 ) \begin{array}{l} \mathbf{A}=\left(\begin{array}{ccc} \cos \omega t & \sin \omega t & 0 \\ -\sin \omega t & \cos \omega t & 0 \\ 0 & 0 & 1 \end{array}\right), \mathbf{b}=\mathbf{0} \\ \mathbf{A}^{-1}=\left(\begin{array}{ccc} \cos \omega t & -\sin \omega t & 0 \\ \sin \omega t & \cos \omega t & 0 \\ 0 & 0 & 1 \end{array}\right) \\ \dot{\mathbf{A}}=\omega\left(\begin{array}{ccc} -\sin \omega t & \cos \omega t & 0 \\ -\cos \omega t & -\sin \omega t & 0 \\ 0 & 0 & 0 \end{array}\right) \\ \ddot{\mathbf{A}}=\omega^2\left(\begin{array}{ccc} -\cos \omega t & -\sin \omega t & 0 \\ \sin \omega t & -\cos \omega t & 0 \\ 0 & 0 & 0 \end{array}\right) \end{array} A=cosωtsinωt0sinωtcosωt0001,b=0A1=cosωtsinωt0sinωtcosωt0001A˙=ωsinωtcosωt0cosωtsinωt0000A¨=ω2cosωtsinωt0sinωtcosωt0000

则可以导出:
F 1 = m ω 2 r ′ 离心力 F 2 = 2 m ω ( y ˙ − x ˙ 0 ) = 2 m v ⃗ × ω ⃗ 科氏力 \begin{aligned} &\mathbf{F} _1 = m\omega^2 \mathbf{r}^\prime \qquad\qquad\qquad\qquad\qquad\color{blue}\text{离心力}\\ &\mathbf{F} _2 =2m\omega\left(\begin{array}{l} \dot{y }\\ -\dot{x} \\ 0 \end{array}\right)=2m\vec v\times\vec \omega \quad\color{blue}\text{科氏力} \end{aligned} F1=mω2r离心力F2=2mωy˙x˙0=2mv ×ω 科氏力

参考文献

【1】科氏力
【2】科里奥利力
【3】辨析科里奥利力
【4】惯性力与科里奥利力的导出
【5】用矢量方法推导科里奥利力的问题?
【6】转动参考系与极坐标系的联系/科里奥利力+力学运算技巧
【7】如何在直角坐标系中推导科里奥利力和惯性离心力的表达式?

  • 5
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值