引出问题——公交站修建站点问题
1) 某城市新增 7 个站点(A, B, C, D, E, F, G) ,现在需要修路把 7 个站点连通
2) 各个站点的距离用边线表示(权) ,比如 A – B 距离 12 公里
3) 问:如何修路保证各个站点都能连通,并且总的修建公路总里程最短?
该问题属于最小生成树问题,而克鲁斯卡尔算法可以解决这种问题。
克鲁斯卡尔算法介绍
简介
1) 克鲁斯卡尔(Kruskal)算法,是求加权连通图的最小生成树的算法。
2) 基本思想:按照权值从小到大的顺序选择 n-1 条边,并保证这 n-1 条边不构成回路
3) 具体做法:首先构造一个只含 n 个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林中不产生回路,直至森林变成一棵树为止。
克鲁斯卡尔算法图解
基本思路
以公交站问题为例进行讲解。在含有 n 个顶点的连通图中选择 n-1 条边,构成一棵极小连通子图,并使该连通子图中 n-1 条边上权值之和达到最小,则称其为连通网的最小生成树。
对于如上图 G4 所示的连通网可以有多棵权值总和不相同的生成树。下图中,第二个图为最小生成树 结果。
算法过程图解
以图 G4 为例,来对克鲁斯卡尔进行演示(假设,用数组 R 保存最小生成树结果。
对上述图解进行文字说明如下:
第 1 步:将边<E,F>加入 R 中。 边<E,F>的权值最小,因此将它加入到最小生成树结果 R 中。
第 2 步:将边<C,D>加入 R 中。 上一步操作之后,边<C,D>的权值最小,因此将它加入到最小生成树结果 R 中。
第 3 步:将边<D,E>加入 R 中。 上一步操作之后,边<D,E>的权值最小,因此将它加入到最小生成树结果 R 中。
第 4 步:将边<B,F>加入 R 中。 上一步操作之后,边<C,E>的权值最小,但会和已有的边构成回路;因此,跳过边<C,E>。同理,跳过边<C,F>。将边<B,F>加入到最小生成树结果 R 中。
第 5 步:将边<E,G>加入 R 中。 上一步操作之后,边<E,G>的权值最小,因此将它加入到最小生成树结果 R 中。
第 6 步:将边<A,B>加入 R 中。 上一步操作之后,边<F,G>的权值最小,但会和已有的边构成回路;因此,跳过边<F,G>。同理,跳过边<B,C>。将边<A,B>加入到最小生成树结果 R 中。 此时,最小生成树构造完成!它包括的边依次是:<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>。
算法核心过程
克鲁斯卡尔算法重点需要解决的以下两个问题:
问题一 对图的所有边按照权值大小进行排序。采用排序算法进行排序即可。
问题二 将边添加到最小生成树中时,怎么样判断是否形成了回路。
处理方式是:记录顶点在"最小生成树"中的终点,顶点的终点是"在最小生成树中与它连通的最大顶点"。 然后每次需要将一条边添加到最小生存树时,判断该边的两个顶点的终点是否重合,重合的话则会构成回路。
判断是否构成回路的过程
在将<E,F> <C,D> <D,E> 加入到最小生成树时,这几条边的顶点都有了终点:
终点:
1) 是将所有顶点按照从小到大的顺序排列好之后;某个顶点的终点就是"与它连通的最大顶点"。
2) 因此,虽然<C,E>是权值最小的边。但是 C 和 E 的终点都是 F,即它们的终点相同,因此,将 <C,E>加入最小生成树的话,会形成回路。这就是判断回路的方式。也就是说,加入的边的两个顶点不能都指向同一 个终点,否则将构成回路。
代码实现克鲁斯卡尔算法——公交站问题
代码细节
1.为了实现克鲁斯算法,需要做一些前置准备。
编写方法,获取图的边,以便于后续对边的权值进行遍历,排序;
编写方法,获取某个顶点对应的值,便于后续应用,如'A'-->0;
编写方法,对边的权值进行排序,从小到大升序排列,便于后续择优选取边;
编写获取某个顶点的终点的方法,以便于判断某两个顶点是否相同,从而得到是否会形成环路;
2.前置工作做好后,编写克鲁斯卡尔算法,首先获取图的边,并对边按照权值进行排序,对排序后的边进行遍历,在将边添加到最小生成树中时,根据前面编写的方法判断是否形成了回路,在没有形成回路的情况下保存对应的边,最终得到最小生成树,就得到了最优的公交站修建方案。
完整代码
package com.study.kruskal;
import java.util.Arrays;
/**
* @author 漂亮小小
* @version 1.0
*/
public class KruskalAlgorithm {
private int edgeNum;//记录边的个数
private char[] vertexs;//顶点数组
private int[][] matrix;//邻接矩阵
//使用INF表示两个顶点不能连通
private static final int INF = Integer.MAX_VALUE;
public static void main(String[] args) {
char[] vertexs = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
//克鲁斯卡尔算法的邻接矩阵
//自己和自己0,
int matrix[][] = {
/*A*//*B*//*C*//*D*//*E*//*F*//*G*/
/*A*/ {0, 12, INF, INF, INF, 16, 14},
/*B*/ {12, 0, 10, INF, INF, 7, INF},
/*C*/ {INF, 10, 0, 3, 5, 6, INF},
/*D*/ {INF, INF, 3, 0, 4, INF, INF},
/*E*/ {INF, INF, 5, 4, 0, 2, 8},
/*F*/ {16, 7, 6, INF, 2, 0, 9},
/*G*/ {14, INF, INF, INF, 8, 9, 0}};
//创建 克鲁斯卡尔 对象实例
KruskalAlgorithm kruskalAlgorithm = new KruskalAlgorithm(vertexs, matrix);
//输出构建的是否正确
kruskalAlgorithm.print();
EData[] edges = kruskalAlgorithm.getEdges();
//测试 构建的边
System.out.println("未排序前 xx=" + Arrays.toString(edges));
//边排序
kruskalAlgorithm.sortEdges(edges);
System.out.println("边排序后 xx=" + Arrays.toString(edges));
;
kruskalAlgorithm.kruskal();
}
//构造器
public KruskalAlgorithm(char[] vertexs, int[][] matrix) {
int vlen = vertexs.length;//顶点个数
//==========用复制拷贝的方式,可以避免函数对传入参数进行修改
//初始化顶点,用复制拷贝的方式
this.vertexs = new char[vlen];
for (int i = 0; i < vertexs.length; i++) {
this.vertexs[i] = vertexs[i];
}
//初始化边, 用复制拷贝的方式
this.matrix = new int[vlen][vlen];
for (int i = 0; i < vlen; i++) {
for (int j = 0; j < vlen; j++) {
this.matrix[i][j] = matrix[i][j];
}
}
//统计边
for (int i = 0; i < vlen; i++) {
for (int j = i + 1; j < vlen; j++) {//不统计自己与自己
if (this.matrix[i][j] != INF) {
edgeNum++;
}
}
}
}
//打印邻接矩阵
public void print() {
System.out.println("邻接矩阵为: \n");
for (int i = 0; i < vertexs.length; i++) {
for (int j = 0; j < vertexs.length; j++) {
System.out.printf("%12d\t", matrix[i][j]);//20代表占位
}
System.out.println();//换行处理
}
}
//对边排序 冒泡排序
/**
* @param edges 边的集合
*/
private void sortEdges(EData[] edges) {
for (int i = 0; i < edges.length - 1; i++) {
for (int j = 0; j < edges.length - i - 1; j++) {
if (edges[j].weight > edges[j + 1].weight) {
EData tmp = edges[j];
edges[j] = edges[j + 1];
edges[j + 1] = tmp;
}
}
}
}
//求顶点的下标
/**
* @param ch 顶点的值,如 'A','B'...
* @return 返回顶点的下标, 如'A'->0 如果找不到,返回-1
*/
private int getPosition(char ch) {
for (int i = 0; i < vertexs.length; i++) {
if (vertexs[i] == ch) {
return i;
}
}
return -1;//找不到
}
//
/**
* 获取图中的边,放到 EData[]数组中,后面需要遍历该数组
* 通过 matrix邻接矩阵获取
* EData[] 形式 ['A','B',12] ['B','F',7]......
*
* @return
*/
private EData[] getEdges() {
int index = 0;
EData[] edges = new EData[edgeNum];
for (int i = 0; i < vertexs.length; i++) {
for (int j = i + 1; j < vertexs.length; j++) {//i+1表示自己跟自己不比较
if (matrix[i][j] != INF) {
edges[index++] = new EData(vertexs[i], vertexs[j], matrix[i][j]);
}
}
}
return edges;
}
//获取下标为 i 的 顶点的终点
/**
* 获取下标为 i 的 顶点的终点,用于后面判断两个顶点的终点是否相同
*
* @param ends 数组,记录了各个顶点对应的终点是哪个,ends是在遍历的过程中逐步扫描完成的
* @param i 表示传入的顶点 对应的下标
* @return 返回 下标为 i 的顶点 对应 的 终点 的下标
*/
private int getEnd(int[] ends, int i) {
while (ends[i] != 0) {
i = ends[i];
}
return i;
}
//
public void kruskal() {
int index = 0;//表示最后结果数组的索引
int[] ends = new int[edgeNum];//保存已有最小生成树中 的 每个顶点在最小生成树中的终点
//创建结果数组,保存最后的最小生成树
EData[] rets = new EData[edgeNum];
//获取原始图中 所有的边的集合,一共有12条边
EData[] edges = getEdges();
System.out.println("获取图的边的集合= " + Arrays.toString(edges) + " 共 " + edges.length + " 条边");
//根据边的权值大小进行排序
sortEdges(edges);
//遍历edges数组,将边添加到最小生成树中时
// 判断准备加入的边是否形成了回路,如果没有,就加入 rets,否则不能加入
for (int i = 0; i < edgeNum; i++) {
//获取到第i条边的第一个顶点 即 起点
int p1 = getPosition(edges[i].start);
//获取到第i条边的第2个顶点
int p2 = getPosition(edges[i].end);
//获取p1这个顶点在已有的最小生成树中的终点
int m = getEnd(ends, p1);
//获取p2这个顶点在已有的最小生成树中的终点
int n = getEnd(ends, p2);
//判断是否构成了回路
if (m != n) {//没有构成回路,才能加
ends[m] = n;//设置 m在已有最小生成树中的终点为n
// ends[n]=n;//不用写 因为getEnd方法已经处理了
rets[index++] = edges[i];//有一条边加入到rets数组
}
}
//统计 并 打印 最小生成树,输出rets数组
System.out.println("最小生成树为:");
for (int i = 0; i < index; i++) {
System.out.println(rets[i]);
}
}
}
//创建一个类 EData,它的对象实例表示一条边
class EData {
char start;//边的一个点
char end;//边的另一个点
int weight;//边的权值
//构造器
public EData(char start, char end, int weight) {
this.start = start;
this.end = end;
this.weight = weight;
}
//重写toString 便于输出这条边的信息
@Override
public String toString() {
return "EData{" +
"<" + start +
"," + end + ">="
+ weight +
'}';
}
}
运行结果:
可以看到,运行结果与理论分析一致。