切西瓜(空间划分问题)

1、题目描述

题目描述: 小Py要吃西瓜,想知道切了n刀后,最多能切出多少块?请你们帮助下小Py. 给你一个正整数n(0 < n <10^3),你输出一个数字,代表最多能切多少块。 如n=1, 输出2。
示例:
输入:n = 1
输出:2

2、题目分析

这道题…如果没有理解清楚题意,那完全就是一道阴间题,只能靠瞎猜…但如果理解了话,那还是有点搞头的…

让我们捋一下大体的思路:想知道切n刀下去能最多得到多少个西瓜?我们知道,刀可以近似看作一个二维平面体,而西瓜可以看作三维空间内的一个空间体。因此,一刀下去,就相当于用一个二维平面去分割三维空间…n刀下去,就相当于用n个平面去分割三维空间…故问题就转换为了:n个平面最多可将三维空间分为多少块。

空间划分问题…对于空间立体感不是很好的朋友来说…貌似并不是一个很友好的问题,但凡事我们皆可以从小做起,我们一步步来,一步步地分析,或许也能得到一些启发。

3、问题推理

(1)直线划分问题

首先我们考虑第一个问题:用n个点最多可以将一条直线划分成多少个部分?

在这里插入图片描述
我们用 A ( n ) A(n) A(n)来表示结果。从上图中,我们可以很容易得到:n个点,可以将其划分成 A ( n ) = n + 1 A(n) = n + 1 A(n)=n+1个部分。

(2)平面划分问题

接下来我们考虑第二个问题:用n条直线最多可以将一个平面划分成多少个部分?

我们用 B ( n ) B(n) B(n)来表示结果。由于这个问题不再像第一个问题这么显然了,故我们选择逐步对该问题进行分析。

首先考虑n = 1的情形:
在这里插入图片描述
很显然,如上图所示: B ( 1 ) = 2 B(1)=2 B(1)=2

再考虑一下n = 2的情形:
在这里插入图片描述
很显然,如上图所示: B ( 2 ) = 4 B(2)=4 B(2)=4

再考虑一下n = 3的情形:
在这里插入图片描述
这里我们需要注意一下,由于我们的目标是得到尽可能多的划分区域,故如上图所示,我这里画的第三条直线没有选择过前两条直线的交点的直线(否者得到的划分区域仅为6个),从而得到的是最大的划分区域 B ( 3 ) = 7 B(3)=7 B(3)=7

从n = 3这个情形中,我们可以洞察出一个规律:即要通过n条直线划分平面而得到尽可能多的平面划分区域,我们应该使得每次引入的第i条直线(i = 1,2,…n)与前i-1条直线相交于i-1个点

并且通过刚才对直线划分问题的研究,我们可以得知:i-1个点可以将一条直线划分成i个部分

恰巧这i个部分,便可以使得划分的平面区域个数增加i个

知道了这个规律后,我们便可以计算n的一般情形:

B ( n ) = 1 + ( 1 + 2 + 3 + . . . + n ) B(n) = 1 + (1+2+3+...+n) B(n)=1+(1+2+3+...+n)

            = 1 + n ∗ ( n + 1 ) 2 =1+ \frac{n*(n+1)}{2} =1+2n(n+1)

(3)空间划分问题

最后,终于进入正题了。

如果理解了前面两个问题的话,这个问题其实并不难。

就像前面所介绍的最大平面划分问题方法一番,我们要引入的第n个平面,必将与前n-1个平面相交得到n-1直线…由于这n-1条直线在这第n个平面上,又可将这第n个平面最大划分成 B ( n − 1 ) B(n-1) B(n1)个区域,而这 B ( n − 1 ) B(n-1) B(n1)个区域,即为新增的空间划分块数。

觉得上面的解释有点抽象?那我们看如下这个例子:

在这里插入图片描述
如上图所示,想象XOY面为引入的第三个平面…在引入XOY面之前,整个空间被YOZ面、ZOX面划分为4个部分…而在进入了XOY面后,由于XOY面和YOZ面、ZOX面有两条交线,这两条交线将XOY面划分成了B(2)=4个部分,而这4个部分,正好使得整个空间的划分多了4个部分

也就是说,如果我们用 C ( n ) C(n) C(n)表示n个平面可将三维空间划分的最大块数,则 C ( n ) = C ( n − 1 ) + B ( n − 1 ) C(n)=C(n-1)+B(n-1) C(n)=C(n1)+B(n1)

那么到现在我们便仅剩下最后的一个问题,就是去求解 C ( n ) C(n) C(n)具体的仅关于n的表达式,如下所示:

C ( 1 ) = 1 C(1)=1 C(1)=1

C ( 2 ) = C ( 1 ) + B ( 1 ) C(2)=C(1)+B(1) C(2)=C(1)+B(1)

C ( 3 ) = C ( 2 ) + B ( 2 ) = C ( 1 ) + B ( 1 ) + B ( 2 ) C(3)=C(2)+B(2)=C(1)+B(1)+B(2) C(3)=C(2)+B(2)=C(1)+B(1)+B(2)

C ( 4 ) = C ( 3 ) + B ( 3 ) = C ( 1 ) + B ( 1 ) + B ( 2 ) + B ( 3 ) C(4)=C(3)+B(3)=C(1)+B(1)+B(2)+B(3) C(4)=C(3)+B(3)=C(1)+B(1)+B(2)+B(3)

. . . . .... ....

C ( n ) = C ( n − 1 ) + B ( n − 1 ) C(n)=C(n-1)+B(n-1) C(n)=C(n1)+B(n1)

= C ( 1 ) + B ( 1 ) + B ( 2 ) + . . . + B ( n − 1 ) =C(1)+B(1)+B(2)+...+B(n-1) =C(1)+B(1)+B(2)+...+B(n1)

= 2 + ( 1 + 1 + 1 2 ) + ( 1 + 4 + 2 2 ) + . . . + ( 1 + ( n − 1 ) 2 + ( n − 1 ) 2 ) =2+(1+\frac{1+1}{2})+(1+\frac{4+2}{2})+...+(1+\frac{(n-1)^2+(n-1)} {2}) =2+(1+21+1)+(1+24+2)+...+(1+2(n1)2+(n1))

= 2 + ( n − 1 ) + 1 2 ∗ n ∗ ( n − 1 ) 2 + 1 2 ∗ n ∗ ( n − 1 ) ∗ ( 2 n − 1 ) 6 =2+(n-1)+\frac{1}{2}*\frac{n*(n-1)}{2}+\frac{1}{2}*\frac{n*(n-1)*(2n-1)}{6} =2+(n1)+212n(n1)+216n(n1)(2n1)

= n + 1 + n 2 − n 4 + 2 n 3 − 3 n 2 + n 12 =n+1+\frac{n^2-n}{4}+\frac{2n^3-3n^2+n}{12} =n+1+4n2n+122n33n2+n

= n 3 + 5 n + 6 6 =\frac{n^3+5n+6}{6} =6n3+5n+6

(其中用到了平方和求和公式,如果有疑惑请点击附录:平方和求和公式)

4、算法源码

有了数学推理的BUFF加成后…这题的代码一行就足矣

print((n**3+5*n+6)//6)

附录:平方和求和公式
S ( n ) = ∑ i = 1 n i 2 S(n) = \sum_{i=1}^n i^2 S(n)=i=1ni2
             ( n + 1 ) 3 − n 3 = 3 n 2 + 3 n + 1 (n+1)^3-n^3=3n^2+3n+1 (n+1)3n3=3n2+3n+1

             n 3 − ( n − 1 ) 3 = 3 ( n − 1 ) 2 + 3 ( n − 1 ) + 1 n^3-(n-1)^3=3(n-1)^2+3(n-1)+1 n3(n1)3=3(n1)2+3(n1)+1

             . . . . . . ...... ......

             3 3 − 2 3 = 3 ∗ 2 2 + 3 ∗ 2 + 1 3^3-2^3=3*2^2+3*2+1 3323=322+32+1

             2 3 − 1 3 = 3 ∗ 1 2 + 3 ∗ 1 + 1 2^3-1^3 = 3*1^2+3*1+1 2313=312+31+1

             以 上 各 式 相 加 得 以上各式相加得

             ( n + 1 ) 3 − 1 3 = 3 S ( n ) + 3 ∗ n ( n + 1 ) 2 + n (n+1)^3-1^3=3S(n)+3*\frac{n(n+1)}{2}+n (n+1)313=3S(n)+32n(n+1)+n

             = > n 3 + 3 n 2 + 3 n = 3 S ( n ) + 3 2 n 2 + 5 2 n =>n^3+3n^2+3n=3S(n)+\frac{3}{2}n^2+\frac{5}{2}n =>n3+3n2+3n=3S(n)+23n2+25n

             = > S ( n ) = n 3 3 + 1 2 n 2 + 1 6 n =>S(n)=\frac{n^3}{3}+\frac{1}{2}n^2+\frac{1}{6}n =>S(n)=3n3+21n2+61n

             = > S ( n ) = n ( n + 1 ) ( 2 n + 1 ) 6 =>S(n)=\frac{n(n+1)(2n+1)}{6} =>S(n)=6n(n+1)(2n+1)

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在Unity中实现西瓜的随机生成可以使用枚举来表示不同的水果,并根据随机生成的枚举值来选择对应的预制体和脚本。首先,创建一个枚举类型来表示水果的不同种类,比如苹果、香蕉、橙子等。接下来,在游戏中需要西瓜的地方,使用随机函数来生成一个随机值对应的水果枚举值。然后,根据这个枚举值来选择对应的预制体和脚本,实现随机生成不同种类的水果。通过这种方法,我们可以在Unity中实现西瓜随机生成的功能。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [Unity 游戏实例开发集合 之 CompoundBigWatermelon (简单合成一个大西瓜) 休闲小游戏快速实现](https://blog.csdn.net/u014361280/article/details/122519355)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [Unity 游戏实例开发集合 之 CutFruit (水果(水果忍者)) 休闲小游戏快速实现](https://blog.csdn.net/u014361280/article/details/122616242)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值