理论学习:关于log-polar变换的有损数学推导

前言

        log-polar变换是一种非常经典的坐标变换方法,也是最早提出最早得到具体应用的变换方法。是由Hossack在1987年首次介绍实现线性-空变到线性空不变光学系统转化的坐标变换理论的文章中提出,而在2010年被引入到涡旋光束调控领域用来实现复用涡旋光束的无损分选。尽管此后多年不断有研究者提出分辨率更高、能量损耗更小的改进方法,但到目前为止,log-polar变换法无论是作为分选方法还是作为纯数学变换方法,都仍然不失其经典性和有效性。
        本篇小文是对log-polar变换的有损数学推导,“有损”之处则在于这一推导过程仅能匹配上论文表达式,但无法保证推导过程的数学严谨性,所以仅供娱乐消遣,建议不要用于专业场景。

log-polar变换

Fig. 1. The schematic diagram of log-polar transformation


        Fig. 1. 所示为log-polar变换的概念示意,时间仓促,中间过程我就没有完全画出来,整个变换过程其实就是一个圆环从某一点切开,然后环形解开变成线形,类似于系绳子-解开绳子。P1和P2为参与变换的两个相位掩膜平面,(x,y)和(u,v)分别为定义在两个平面上的笛卡尔坐标,Φ1和Φ2则为掩膜平面的相位函数,f表示两平面之间的衍射距离。从这个定义中可以发现,P1上的角度坐标与P2上的纵轴坐标是存在关联的,具体表述就是,两坐标是中间是线性关系,那么可以作如下表示:

v=a\theta =a\cdot atan\left ( y/x \right )                                                  (1)

式(1)的a为缩放系数,θ为P1平面的角度坐标。log-polar变换在数学上的成立(即两个平面上的相位函数可解)有个充分条件,因为篇幅过长就不赘述,这里仅给出这个充分条件的表达式:

\frac{\partial u }{\partial y}=\frac{\partial v}{\partial x}                                                                   (2)

上面的u,v指的不仅仅是坐标,而是坐标函数,u = u(x,y),v = v(x,y),现有的条件仅有v与θ的关系,代入上式计算,可以得到如下结果:

\frac{\partial u}{\partial y}=-a\frac{y}{x^{2}+y^{2}}                                                           (3)

对u(x,y)这个偏微分方程求个不定积分,可以得到u与(x,y)之间的坐标关系,如下所示:

u=-aln\left ( \frac{\sqrt{x^{2}+y^{2}}}{b} \right )                                                  (4)

b也同样是缩放系数,是计算不定积分所得到的常数项,在这里变换了一下形式,起到调控线形光场水平位置的作用。这个表达式的求解让我们直观看见了系绳子-解绳子过程的坐标映射关系。上面的充分条件其实是说,满足这个坐标条件,便能求解到相位函数从而实现变换过程。同理,为了表达的简便,这里直接给出求解相位函数的关键步骤(其实是我不想写了,直接去看参考文献1吧):
  \left\{\begin{matrix} \frac{\partial \Psi _{1}}{\partial x}=k\frac{u-x}{f}=k\frac{-aln\left ( \frac{\sqrt{x^{2}+y^{2}}}{b} \right )-x}{f} & & \\ \frac{\partial \Psi _{1}}{\partial y}=k\frac{v-y}{f}=k\frac{a\cdot atan\left ( \frac{y}{x} \right)-y}{f} & & \end{matrix}\right.                                      (5)

已经知道了函数的一阶偏微分,要求解原函数,现在小伙伴们可以拿出你们的高数课本了。或者取个巧吧,P1平面的光场是圆环,所以很自然想到可以转换到极坐标系下去求解这个原函数:

\frac{\partial\Psi _{1} }{\partial r}=\frac{\partial\Psi _{1} }{\partial x}\cdot\frac{\partial x}{\partial r}+\frac{\partial\Psi _{1} }{\partial y}\cdot\frac{\partial y}{\partial r}                                              (6)

计算过程同样省略,只给出最后的相位函数结果:

\Psi _{1}\left ( x,y \right )=\frac{ka}{f}\cdot \left ( x-xln\left ( \frac{\sqrt{x^{2}+y^{2}}}{b} \right ) +y\cdot atan\left ( \frac{y}{x} \right )\right )-k\frac{r^{2}}{f}           (7)

对P2掩膜上的相位函数,也有如下方程组:

\left\{\begin{matrix} \frac{\partial \Psi _{2}}{\partial u}=k\frac{x-u}{f}=k\cdot \frac{b\cdot exp\left ( -\frac{u}{a} \right )cos\frac{v}{a}-u}{f}\\ \frac{\partial \Psi _{2}}{\partial v}=k\frac{y-v}{f}=k\cdot \frac{b\cdot exp\left ( -\frac{u}{a} \right )sin\frac{v}{a}-v}{f} \end{matrix}\right.                                    (8)

上面这个方程组非常对称,e指数函数的导数和积分都是其本身,三角函数也是如此。两偏导数分别求不定积分之后得到P2平面的相位函数如下:

\Psi _{2}=-\frac{kab}{f}exp\left ( -\frac{u}{a} \right )cos\frac{v}{a}-\frac{k\rho ^{2}}{2f}                                      (9)

结语

本篇log-polar变换的推导完全是建立在光线光学的基础之上,如果要从波动光学角度去验证,便需要引入驻点相位估计。当然也可以从复变函数的角度去作上述推导,只是我还没学会。单从数学角度来看,这样的推导也不完全严谨。即便是用相同的方法推导了很多次,我也还是觉得这种变换非常神奇,更神奇的地方在于,我总以为前人提出的方法已经没有什么可以再改进和补充的,但每隔那么一段时间总会有一些更新奇的现象和新颖的理论出现,在通往更高智慧的征途上,永远都有人踽踽独行。希望这篇旧方法能够多多少少带来一些新启发。

最后祝大家中秋节快乐!Enjoy your holiday!

参考文献

[1]Hossack 等 - 1987 - Coordinate Transformations with Multiple Computer.

[2]Berkhout 等 - 2010 - Efficient Sorting of Orbital Angular Momentum State.


  
  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值