前言
log-polar变换是一种非常经典的坐标变换方法,也是最早提出最早得到具体应用的变换方法。是由Hossack在1987年首次介绍实现线性-空变到线性空不变光学系统转化的坐标变换理论的文章中提出,而在2010年被引入到涡旋光束调控领域用来实现复用涡旋光束的无损分选。尽管此后多年不断有研究者提出分辨率更高、能量损耗更小的改进方法,但到目前为止,log-polar变换法无论是作为分选方法还是作为纯数学变换方法,都仍然不失其经典性和有效性。
本篇小文是对log-polar变换的有损数学推导,“有损”之处则在于这一推导过程仅能匹配上论文表达式,但无法保证推导过程的数学严谨性,所以仅供娱乐消遣,建议不要用于专业场景。
log-polar变换
Fig. 1. 所示为log-polar变换的概念示意,时间仓促,中间过程我就没有完全画出来,整个变换过程其实就是一个圆环从某一点切开,然后环形解开变成线形,类似于系绳子-解开绳子。P1和P2为参与变换的两个相位掩膜平面,(x,y)和(u,v)分别为定义在两个平面上的笛卡尔坐标,Φ1和Φ2则为掩膜平面的相位函数,f表示两平面之间的衍射距离。从这个定义中可以发现,P1上的角度坐标与P2上的纵轴坐标是存在关联的,具体表述就是,两坐标是中间是线性关系,那么可以作如下表示:
(1)
式(1)的a为缩放系数,θ为P1平面的角度坐标。log-polar变换在数学上的成立(即两个平面上的相位函数可解)有个充分条件,因为篇幅过长就不赘述,这里仅给出这个充分条件的表达式:
(2)
上面的u,v指的不仅仅是坐标,而是坐标函数,u = u(x,y),v = v(x,y),现有的条件仅有v与θ的关系,代入上式计算,可以得到如下结果:
(3)
对u(x,y)这个偏微分方程求个不定积分,可以得到u与(x,y)之间的坐标关系,如下所示:
(4)
b也同样是缩放系数,是计算不定积分所得到的常数项,在这里变换了一下形式,起到调控线形光场水平位置的作用。这个表达式的求解让我们直观看见了系绳子-解绳子过程的坐标映射关系。上面的充分条件其实是说,满足这个坐标条件,便能求解到相位函数从而实现变换过程。同理,为了表达的简便,这里直接给出求解相位函数的关键步骤(其实是我不想写了,直接去看参考文献1吧):
(5)
已经知道了函数的一阶偏微分,要求解原函数,现在小伙伴们可以拿出你们的高数课本了。或者取个巧吧,P1平面的光场是圆环,所以很自然想到可以转换到极坐标系下去求解这个原函数:
(6)
计算过程同样省略,只给出最后的相位函数结果:
(7)
对P2掩膜上的相位函数,也有如下方程组:
(8)
上面这个方程组非常对称,e指数函数的导数和积分都是其本身,三角函数也是如此。两偏导数分别求不定积分之后得到P2平面的相位函数如下:
(9)
结语
本篇log-polar变换的推导完全是建立在光线光学的基础之上,如果要从波动光学角度去验证,便需要引入驻点相位估计。当然也可以从复变函数的角度去作上述推导,只是我还没学会。单从数学角度来看,这样的推导也不完全严谨。即便是用相同的方法推导了很多次,我也还是觉得这种变换非常神奇,更神奇的地方在于,我总以为前人提出的方法已经没有什么可以再改进和补充的,但每隔那么一段时间总会有一些更新奇的现象和新颖的理论出现,在通往更高智慧的征途上,永远都有人踽踽独行。希望这篇旧方法能够多多少少带来一些新启发。
最后祝大家中秋节快乐!Enjoy your holiday!
参考文献
[1]Hossack 等 - 1987 - Coordinate Transformations with Multiple Computer.
[2]Berkhout 等 - 2010 - Efficient Sorting of Orbital Angular Momentum State.