斯托克斯参量可以用来描述光波的光强和偏振态,本文将详细介绍如何利用斯托克斯参量来验证光波的偏振态.
斯托克斯参量有四个,可用矩阵表示,均为光强的时间平均值,用来描述光波的偏振态.分别表示光波的
分量,
为两分量之间的相位差.斯托克斯矩阵可以表示为:
将一些特殊的数值代入,可以得到常见的几种各向同性偏振光的斯托克斯矢量,如图1所示.

从上表中容易得出各参量对应的物理意义:表示光波的总强度;
表示水平方向的线偏振光分量;
表示45°方向的线偏振光分量;
表示右旋圆偏振光分量;当出现与上述偏振光正交的光束时,即竖直方向的线偏振光、-45°方向的线偏振光、左旋圆偏振光,对应的参量为负值.
全面描述光波的偏振状态需要四个要素:偏振度、偏振类型、偏振旋向、偏振角度
偏振度
偏振度定义为,其意义为判断光波偏振的程度,即是否为完全偏振光。一般情况下,
。当
时,光波为完全非偏振光,也就是自然光;当
时,光波为部分偏振光;当
时,光波为完全偏振光。
斯托克斯参量之间并非相互正交,四个参量之间存在着一个不等式关系,即,也就是说光波的偏振态可以由以
为坐标轴,
为半径的球上。这个球也叫做偏振庞加莱球,如图2所示。

偏振庞加莱球的球面上任意一点都可以表示完全偏振光,所以光波的偏振态可以映射到球面的某一点上,并由两个角度(经纬度)坐标确定。
(这里的与图2的表示有出入,
为由
轴逆时针转向
轴的角度,
为由赤道平面逆时针转向
轴的角度)
偏振类型和旋向
光波的偏振类型可分为线偏、圆偏、椭圆偏三种,椭圆偏振是偏振态的一般表现形式,而线偏振和圆偏振可以看作是椭圆偏振的特殊情况。由于表示右旋圆偏振分量,那么可以用(S3/S0)作为偏振类型的判断依据: 当(S3/S0=0)时, 说明光波没有圆偏振分量, 即为线偏振光; 当(abs(S3/S0)=1)时,表示光波只有圆偏振分量,说明光波为圆偏振光; 而当(0<abs(S3/S0)<1)时, 光波有圆偏振分量, 也存在线偏振分量, 说明光波的偏振态为椭圆偏振.
该比值的正负决定偏振旋向. 正值表示右旋偏振, 负值表示左旋偏振.
偏振角度
将线偏振光和椭圆偏振光的长轴与水平方向的夹角定义为偏振角度,如图3中的角α所示。

其中有
对比斯托克斯参量可以发现
那么偏振角度可以用斯托克斯参量表示为
光波偏振态的判定方法和偏振庞加莱球的经纬度坐标非常相似,那么同样可以用偏振庞加莱球简易表示光波的偏振类型和偏振角度。简单比较公式后可以发现,偏振庞加莱球的赤道表面表示线偏振光,北极表示右旋圆偏振光,南极表示左旋圆偏振光,其他位置的表面表示椭圆偏振光,且在同一经度上,椭圆偏振光随着纬度的增加越来越接近圆偏振光。偏振庞加莱球的北半球表示右旋偏振光,南半球表示左旋偏振光。除南北极两点外,其余每个位置的偏振角度均为其位置所在经度的一半。
可进一步根据此方法在实验上验证光波的偏振态。