Instance segmentation method for weed detection using UAV imagery insoybean fields
摘要
作物杂草检测是精确农业的一个新领域,它可以区分理想和不理想的作物。
准确、高效的杂草检测与识别是精确杂草治理的基础。
本研究提出一种结合可见颜色指数与基于编码器和解码器架构的实例分割方法的新方法。该方法解决了杂草和大豆作物密集分布中杂草的准确检测和分割的难题。色彩指数的设计是为了突出植物和土壤之间的对比,以减轻光照和背景的影响,而将ResNet101_v和DSASPP集成到编解码框架中,可以增强多尺度语义信息的提取能力,提高杂草patch边界分割的准确性。在真实场景图像上的实验结果表明,该方法具有较好的性能,其杂草分割的精度为0.905,IoU值为0.959,aAcc值为0.978,mIoU值为0.939,mAcc值为0.972。在与Deeplabv3plus、Deeplabv3、FCN、U-net、FastFCN、Swin Transformer和Vision Transformer的对比中,该管道在区分杂草和大豆的分割精度和执行时间上取得了相当的性能。这项工作为精确农业领域做出了重要贡献,为具有挑战性的杂草检测和精确杂草控制提供了一种有前景的方法。
1、介绍
特定地点杂草管理(SSWM)是一种精准农业方法,它利用遥感技术来识别和定位田间杂草,进而促进有针对性的杂草控制措施的应用,以减少化学品的使用,避免过度使用和浪费(Christensen等,2009年;怀尔斯,2009)。这种方法可以补充传统的杂草管理方法,根据杂草的位置、数量和其他因素对其进行量身定制的处理。例如,在采用化学除草控制的田地中,这可能会减少除草剂流向邻近的作物和邻近的栖息地,方法是尽量减少在田地中施用的除草剂总
本研究提出一种结合可见颜色指数与ResNet101_v和DSASPP的实例分割方法,用于大豆田杂草检测。通过色彩指数增强植被与土壤对比,提高杂草检测准确性。实验结果显示,该方法在杂草分割精度上达到0.905,IoU值为0.959,对比现有方法表现出色,为精确农业提供有效解决方案。
订阅专栏 解锁全文
899





