Precision weed detection in wheat fields for agriculture 4.0: A survey of enabling technologies, methods, and research challenges
摘要
杂草严重威胁着小麦的安全生产。它们是导致小麦产量和品质下降的重要因素。目前的麦田杂草防治方法主要依赖于化学防治。由于无法准确确定杂草的位置,导致农药使用过量,利用率低,造成严重污染。随着农艺操作向农业4.0的发展,麦田杂草控制技术也越来越精确和智能化。麦田杂草检测技术和方法为提高麦田除草的准确性和效率提供了基础。本研究首先综述了麦田中常见的杂草种类和分布规律,并对当前杂草检测技术和发展进行了深入分析。重点介绍了在麦田杂草检测中的光谱、图像、成像光谱、深度信息和多模态信息融合等方面的研究现状。总结了杂草检测算法从传统机器学习到深度学习的发展趋势,并提出了未来麦田杂草检测的发展趋势。本研究有助于实现杂草管理的自动化和精细化。
1、引言
小麦是世界上分布最广泛的主要粮食作物。其产量和播种面积约占粮食作物的三分之一,因此小麦在全局粮食安全中发挥着重要作用(Shiferaw et al., 2013)。麦田杂草是制约小麦产量和品质的主要生物灾害。杂草与小麦争夺光、水、肥和生长空间。杂草通过影响小麦的叶面积和生物量积累等指标,最终导致小麦产量下降(Singh et al., 2013;霍尔特,1995)。研究表明,杂草将使小麦产量平均下降24%。因此,有必要采取杂草管理策略,以减少产量损失(Han et al., 2014;Kolb等人,2012年;Behdarvand等人ÿ