信息与通信工程学科面试——线性代数

行列式、矩阵的秩

行列式可以理解为n维向量组成的n维空间的体积,比如说22的行列式,就可以看成是两组向量组成的平行四边形的面积,三维就是平行六面体的体积,以此类推。若其中有两组或以上的向量线性相关,围成面积or体积为0,因此行列式为0。因此由这些向量组成的矩阵不可逆。
矩阵的秩即为最高阶非零子式的阶数,本质上就是组成该矩阵的线性无关的向量个数。因此若一个矩阵n*n大小的秩为n,等价于线性无关向量的个数为n,因此行列式有值且不为0,因此矩阵可逆。初等行变换不改变矩阵的秩

线性相关与线性无关

线性相关等价于齐次线性方程组有非零解也即若一组向量线性无关,那么齐次方程组只有零解。且若向量组部分线性相关,那么整体向量组一定线性相关;若整体向量组线性无关,则部分向量组也线性无关。一组向量组可以用另一组较少数目的向量组表示的话,那么这组多的向量组一定线性相关。

极大线性无关组:一组向量中的部分向量为线性无关,且改组向量中的所有向量均能由这组部分向量线性表示出来,就称该部分向量组为极大线性无关组。其部分向量组的个数为向量的秩,等价于矩阵的秩。

线性方程组的解

一、齐次方程组
满秩时即r=n(n为未知数个数),有唯一零解。秩r<n时,有非零解,且有n-r个线性无关解
二、非齐次方程组
若矩阵的秩与增广矩阵的秩不同,则无解。
若两者相同,且秩的大小为n,则有唯一解;若r<n,则有无穷多解。
其解为齐次通解+非齐次特解

求向量组的极大无关组的一般步骤:

  1. 把向量组作为矩阵的列向量构成一个矩阵;
  2. 用初等行变换将该矩阵化为阶梯阵;
  3. 主元所在列对应的原向量组即为极大无关组。

求齐次线性方程组通解要先求基础解系,步骤:
a. 写出齐次方程组的系数矩阵A;
b. 将A通过初等行变换化为阶梯阵;
c. 把阶梯阵中非主元列对应的变量作为自由元(n – r 个);
d.令自由元中一个为 1 ,其余为 0 ,求得 n – r 个解向量,即为一个基础解系。
齐次线性方程组AX= 0:
若X1,X2… ,Xn-r为基础解系,则X=k1 X1+ k2 X2 +…+kn-rXn-r,即为AX= 0的全部解(或称方程组的通解)。

特征值与特征向量

特征值的性质:特征值乘积为行列式的值,特征值求和等于矩阵的对角线上的值求和。
特征向量的性质:
在这里插入图片描述
求解特征值与特征向量的方法:一般先用特征多项式求出特征值,然后利用特征多项式|λ E-A|=0求出λ ,再解齐次线性方程组(λ E-A)x=0求得特征向量x。

相似矩阵、可相似对角化、实对称矩阵

相似矩阵:A、B为n阶方阵,若存在n阶可逆方阵P,满足PAP-1=B,则称A、B为相似矩阵。相似矩阵具有相同的秩、行列式的值、相同特征多项式、相同特征值。

可相似对角化:若n阶矩阵A,存在n阶可逆矩阵P,满足PAP-1=A1;其中A1为对角矩阵,则称A矩阵可相似对角化。
1.A矩阵有n个线性无关的特征向量。
2.A对应的每个k重特征值都对应着k个线性无关的特征向量。
3.A矩阵为实对称矩阵。
4.A矩阵有n个不同的特征值。
其中1.2是充要条件、3.4为充分条件。

实对称矩阵的相似矩阵
实对称矩阵属于不同特征值的特征向量均正交。
实对称矩阵必相似于对角矩阵,且存在正交矩阵Q,满足QAQ-1=A1。

二次型

合同矩阵:对于n阶方阵A、B,存在可逆方阵C,满足CT A C=B,则称A、B为合同矩阵。
由二次型化为标准二次型方法:正交变换法、配方法
二次型:为了保证唯一性,所以二次型需为对称的。标准二次型即需要仅含平方项的二次型。规范型二次型则需要在标准型上所有系数为-1、0、1.

正定矩阵:假设二次型f(x1,x2,…)=XT A X ,若对任何非零向量x=(x1,x2,…),都有f>0,则称A为正定矩阵。反之为负定矩阵

  • 1
    点赞
  • 56
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Allen吖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值