COCO数据集中图像的caption读取到txt文件

该代码片段展示了如何读取并处理SketchyCOCO数据集中annotations_trainval2017.zip文件中的caption信息,将图片ID与其对应的caption写入txt文件中以便后续使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

annotations_trainval2017.zip
在这里插入图片描述

import os
import shutil
import json

captions_path = r"G:\SketchDiffusion\Sketchycoco\Dataset\annotations\captions_train2017.json"
# 读取json文件
with open(captions_path, 'r') as f1:
    dictortary = json.load(f1)

# 得到images和annotations信息
images_value = dictortary.get("images")
annotations_value = dictortary.get("annotations")

# 使用images下的图像名的id创建txt文件
list=[]
id2name = dict()
for i in images_value:
    list.append(i.get("id"))
    id2name[i.get("id")] = i.get("file_name")

# 将id对应图片的caption写入txt文件中
txt_path = r"G:\SketchDiffusion\Sketchycoco\Dataset\caption"
for i in list:
    for j in annotations_value:
        if j.get("image_id") == i:
            imgname = id2name.get(i).split(".")[0]
            file_name = txt_path + "\\coco_" + imgname + '.txt'
            if not os.path.exists(file_name):
                open(file_name, 'w')
            with open(file_name, 'a') as f2:
                f2.write(j.get("caption")+"\n")

print('over!')

结果:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

代码小白的成长

计算机网络PPT下载

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值