微分方程 Lab

First-Order Differential Equation
形如 F ( t , y , y ′ ) = 0 F(t,y,y')=0 F(t,y,y)=0 d y d t = ϕ ( t , y ) \frac{dy}{dt}=\phi(t,y) dtdy=ϕ(t,y)的方程式,即为一阶微分方程。例如:
y ′ − t 2 − 1 = 0 y'-t^2-1=0 yt21=0
一阶微分方程的解 f ( t ) f(t) f(t) 需满足使得 F ( t , f ( t ) , f ′ ( t ) ) = 0 F(t,f(t),f'(t))=0 F(t,f(t),f(t))=0 对于任意 t t t 均成立

First-Order Initial Value Problem
形如 F ( t , y , y ′ ) = 0 , y ( t 0 ) = y 0 F(t,y,y')=0,\quad y(t_0)=y_0 F(t,y,y)=0,y(t0)=y0 的一系列方程式,即为一阶储值问题。例如
y ′ = t 2 + 1 , y ( 1 ) = 4 y'=t^2+1,\quad y(1)=4 y=t2+1,y(1)=4 的解为 f ( t ) = t 3 / 3 + t + 8 / 3 f(t)=t^3/3+t+8/3 f(t)=t3/3+t+8/3

在这里插入图片描述

可以尝试用多个大小不同的 h 来试试,然后列张表格啥的
像这样
在这里插入图片描述
(1) d y d t = f ( t , y ) \frac{dy}{dt}=f(t,y) dtdy=f(t,y)

(2) y ( t 0 ) = y 0 y(t_0)=y_0 y(t0)=y0

(3) d ϕ d t ( t n ) = f ( t n , ϕ ( t n ) ) \frac{d\phi}{dt}(t_n)=f(t_n,\phi(t_n)) dtdϕ(tn)=f(tn,ϕ(tn))

(4) ϕ ( t n + 1 ) − ϕ ( t n ) t n + 1 − t n ≈ f ( t n , ϕ ( t n ) ) \frac{\phi(t_{n+1})-\phi(t_n)}{t_{n+1}-t_n}\approx f(t_n,\phi(t_n)) tn+1tnϕ(tn+1)ϕ(tn)f(tn,ϕ(tn))

Euler
(5) y n + 1 = y n + h f ( t n , y n ) y_{n+1}=y_n+hf(t_n,y_n) yn+1=yn+hf(tn,yn)

Backward Euler
(6) y n + 1 = y n + h f ( t n + 1 , y n + 1 ) y_{n+1}=y_n+hf(t_{n+1},y_{n+1}) yn+1=yn+hf(tn+1,yn+1)

Global Truncation Error
无限精度的情况下
difference between solution y = ϕ ( t ) y=\phi(t) y=ϕ(t) and the numerical approximation y n y_n yn at t n t_n tn
(7) E n = ϕ ( t n ) − y n E_n=\phi(t_n)-y_n En=ϕ(tn)yn

Round-off Error
但是现实的精度肯定是有限的
difference between numerical approximation ideally y n y_n yn and that practicingly Y n Y_n Yn (即实际通过数值法计算出来的结果)
(8) R n = y n − Y n R_n=y_n-Y_n Rn=ynYn

(9) ∣ ϕ ( t n ) − Y n ∣ = ∣ ϕ ( t n ) − y n + y n − Y n ∣ ≤ ∣ ϕ ( t n ) − y n ∣ + ∣ y n − Y n ∣ = ∣ E n ∣ + ∣ R n ∣ |\phi(t_n)-Y_n|=|\phi(t_n)-y_n+y_n-Y_n| \\ \leq |\phi(t_n)-y_n|+|y_n-Y_n| = |E_n| + |R_n| ϕ(tn)Yn=ϕ(tn)yn+ynYnϕ(tn)yn+ynYn=En+Rn

Improved Euler
y n + 1 = y n + f ( t n , y n ) + f ( t n + 1 , y n + 1 ) 2 h y_{n+1}=y_n+\frac{f(t_n,y_n)+f(t_{n+1},y_{n+1})}{2}h yn+1=yn+2f(tn,yn)+f(tn+1,yn+1)h

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

江湖留名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值