2021.03.07 更新: 优化了 section 1 的内容,删去文章原先结构中的 2、3 两个 section(这两部分涉及高斯过程的权重空间视角,因并不实用且易产生混淆而得到删除,但其完整内容仍然可以在作者的个人博客中查看:链接 )
2021.03.27 更新: 丰富了 section 2 的内容,添加了更多图像化的、从而易于理解的表述。
【参考资料】
1.B站:机器学习-白板推导系列(二十)-高斯过程GP(Gaussian Process)
2.CSDN:一文搞定(二)—— 贝叶斯线性回归
3.知乎:Gaussian process regression的导出——权重空间视角下的贝叶斯的方法
4.知乎:高斯过程 Gaussian Processes 原理、可视化及代码实现
【文章结构】
1 Introduction: 从高斯分布到高斯过程
2 高斯过程回归 Gaussian Process Regression
3 代码示例 (包含对于一个简单 GPR 示例的 python 和 matlab 两种语言的代码)
1 Introduction: 从高斯分布到高斯过程
1.1 多元高斯分布
p ( x ) = ∏ i = 1 n p ( x i ) = 1 ( 2 π ) n 2 σ 1 . . . σ n exp ( − 1 2 [ ( x 1 − μ 1 ) 2 σ 1 2 . . . ( x n − μ n ) 2 σ 2 2 ] ) (1) \tag{1} p(\bm{x})=\prod_{i=1}^n p(x_i)=\frac{1}{(2\pi)^{\frac{n}{2}}\sigma_1...\sigma_n}\exp\Big(-\frac{1}{2}[\frac{(x_1-\mu_1)^2}{\sigma_1^2}...\frac{(x_n-\mu_n)^2}{\sigma_2^2}]\Big) p(x)=i=1∏np(xi)=(2π)2nσ1...σn1exp(−21[σ12(x1−μ1)2...σ22(xn−μn)2])(1)
进一步的,令
- x − μ = [ x 1 − μ 1 , . . . , x n − μ n ] T \bm{x-\mu}=[x_1-\mu_1,...,x_n-\mu_n]^T x−μ=[x1−μ1,...,xn−μn]T
- Σ = [ σ 1 2 0 . . . 0 0 σ 2 2 . . . 0 . . . . . . . . . . . . . 0 . . . 0 σ n 2 ] \bm\Sigma=\begin{bmatrix} \sigma_1^2 & 0 & ... & 0 \\ 0 & \sigma_2^2 & ... & 0 \\ ... & ... & ... & .... \\ 0 & ... & 0 & \sigma_n^2 \end{bmatrix} Σ=⎣⎢⎢⎡σ120...00σ22...............000....σn2⎦⎥⎥⎤
从而可得多元高斯分布的向量化表示: