傅里叶变化(三)—— 傅里叶变换

【参考资料】
1.万门大学:傅立叶变换、拉普拉斯变换与小波变换

【傅里叶变换系列博客】
1.傅里叶变化(一)—— 复数
2.傅里叶变换(二)—— 卷积
3.傅里叶变化(三)—— 傅里叶变换

1 傅里叶概述

傅里叶变换是一种线性积分变换,用于信号在时域(或空域) t t t 和频域 w w w 之间的变换

从线性代数来看,定义函数 f ( t ) , g ( w ) f(t),g(w) f(t),g(w) 是不同线性空间中的向量,且存在变换矩阵 A A A,能够将 f ( t ) f(t) f(t) 空间中的向量 yiyi 对应至 g ( w ) g(w) g(w) 空间中,这个变换的过程就称为傅里叶变化

f ( t ) ↔ g ( w ) f(t)\leftrightarrow g(w) f(t)g(w)

2 傅里叶级数

有关傅里叶级数的内容,请查看我的另一篇博客(个人笔记)傅里叶变换,这里就直接给出结论公式:若 f ( x ) f(x) f(x) 为周期为 T T T 的函数,并且满足傅立叶级数的收敛条件,那么可以写作傅立叶级数
f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ ( 2 π n x T ) + b n sin ⁡ ( 2 π n x T ) ) f(x)=\frac{a_0}{2}+\sum_{n=1}^\infty(a_n\cos(\frac{2\pi nx}{T})+b_n\sin(\frac{2\pi nx}{T})) f(x)=2a0+n=1(ancos(T2πnx)+bnsin(T2πnx))

where,

  1. a n = 2 T ∫ x 0 x 0 + T f ( x ) cos ⁡ ( 2 π n x T ) d x a_n=\frac{2}{T}\int_{x_0}^{x_0+T}f(x)\cos(\frac{2\pi nx}{T})dx an=T2x0x0+Tf(x)cos(T2πnx)dx
  2. b n = 2 T ∫ x 0 x 0 + T f ( x ) sin ⁡ ( 2 π n x T ) d x b_n=\frac{2}{T}\int_{x_0}^{x_0+T}f(x)\sin(\frac{2\pi nx}{T})dx bn=T2x0x0+Tf(x)sin(T2πnx)dx

3 例子与重要恒等式的推导

3.1 恒等式1: π 4 = 1 − 1 3 + 1 5 − . . . \frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-... 4π=131+51...

例子部分的具体推导请查看我的另一篇博客(个人笔记)傅里叶变换,这里就直接给出结论:对于如下 T = 2 π T=2\pi T=2π 的周期函数 f ( x ) f(x) f(x)

f ( x ) = 1 2 + 2 π ( sin ⁡ ( x ) + sin ⁡ ( 3 x ) 3 + sin ⁡ ( 5 x ) 5 + . . . ) f(x)=\frac{1}{2}+\frac{2}{\pi}(\sin(x)+\frac{\sin(3x)}{3}+\frac{\sin(5x)}{5}+...) f(x)=21+π2(sin(x)+3sin(3x)+5sin(5x)+...)

将上图函数向左平移 π 2 \frac{\pi}{2} 2π,可得
f ( x + π 2 ) = 1 2 + 2 π ( cos ⁡ ( x ) − cos ⁡ ( 3 x ) 3 + cos ⁡ ( 5 x ) 5 − . . . ) f(x+\frac{\pi}{2})=\frac{1}{2}+\frac{2}{\pi}(\cos(x)-\frac{\cos(3x)}{3}+\frac{\cos(5x)}{5}-...) f(x+2π)=21+π2(cos(x)3cos(3x)+5cos(5x)...)

x = 0 x=0 x=0 时,
f ( π 2 ) = 1 = 1 2 + 2 π ( 1 − 1 3 + 1 5 − . . . ) f(\frac{\pi}{2})=1=\frac{1}{2}+\frac{2}{\pi}(1-\frac{1}{3}+\frac{1}{5}-...) f(2π)=1=21+π2(131+51...)

由此可得
π 4 = 1 − 1 3 + 1 5 − . . . \frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-... 4π=131+51...

3.2 恒等式2: π 2 8 = 1 + 1 3 2 + 1 5 2 + . . . \frac{\pi^2}{8}=1+\frac{1}{3^2}+\frac{1}{5^2}+... 8π2=1+321+521+...

例子部分的具体推导请查看我的另一篇博客(个人笔记)傅里叶变换,这里就直接给出结论:对于如下 T = 2 π T=2\pi T=2π 的周期函数 f ( x ) f(x) f(x)

f ( x ) = π 4 − 2 π ( cos ⁡ ( x ) + cos ⁡ ( 3 x ) 3 2 + cos ⁡ ( 5 x ) 5 2 + . . . ) + ( sin ⁡ ( x ) − sin ⁡ ( 2 x ) 2 + sin ⁡ ( 3 x ) 3 − . . . ) f(x)=\frac{\pi}{4}-\frac{2}{\pi}(\cos(x)+\frac{\cos(3x)}{3^2}+\frac{\cos(5x)}{5^2}+...)+(\sin(x)-\frac{\sin(2x)}{2}+\frac{\sin(3x)}{3}-...) f(x)=4ππ2(cos(x)+32cos(3x)+52cos(5x)+...)+(sin(x)2sin(2x)+3sin(3x)...)

x = 0 x=0 x=0
f ( 0 ) = 0 = π 4 − 2 π ( 1 + 1 3 2 + 1 5 2 + . . . ) f(0)=0=\frac{\pi}{4}-\frac{2}{\pi}(1+\frac{1}{3^2}+\frac{1}{5^2}+...) f(0)=0=4ππ2(1+321+521+...)

由此可得
π 2 8 = 1 + 1 3 2 + 1 5 2 + . . . \frac{\pi^2}{8}=1+\frac{1}{3^2}+\frac{1}{5^2}+... 8π2=1+321+521+...

4 引入欧拉公式

f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ ( 2 π n x T ) + b n sin ⁡ ( 2 π n x T ) ) f(x)=\frac{a_0}{2}+\sum_{n=1}^\infty(a_n\cos(\frac{2\pi nx}{T})+b_n\sin(\frac{2\pi nx}{T})) f(x)=2a0+n=1(ancos(T2πnx)+bnsin(T2πnx))

where,

  1. a n = 2 T ∫ x 0 x 0 + T f ( x ) cos ⁡ ( 2 π n x T ) d x a_n=\frac{2}{T}\int_{x_0}^{x_0+T}f(x)\cos(\frac{2\pi nx}{T})dx an=T2x0x0+Tf(x)cos(T2πnx)dx
  2. b n = 2 T ∫ x 0 x 0 + T f ( x ) sin ⁡ ( 2 π n x T ) d x b_n=\frac{2}{T}\int_{x_0}^{x_0+T}f(x)\sin(\frac{2\pi nx}{T})dx bn=T2x0x0+Tf(x)sin(T2πnx)dx

cos ⁡ ( k θ ) = e i k θ + e − i k θ 2 \cos(k\theta)=\frac{e^{ik\theta}+e^{-ik\theta}}{2} cos(kθ)=2eikθ+eikθ
sin ⁡ ( k θ ) = e i k θ − e − i k θ 2 i \sin(k\theta)=\frac{e^{ik\theta}-e^{-ik\theta}}{2i} sin(kθ)=2ieikθeikθ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

江湖留名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值