leetcode力扣(62)----------不同路径

本文介绍了一种使用动态规划算法解决机器人在mxn网格中从左上角到右下角的不同路径数量问题的方法。通过定义状态dp[i,j]表示到达每个节点的路径数量,并利用动态转移方程dp[i,j]=dp[i][j+1]+dp[i+1][j],自底向上计算出起点的路径数量。
摘要由CSDN通过智能技术生成
题目描述:

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
在这里插入图片描述

分析:

这道题与之前记录的一道迷宫题目类似,比那一题还简单走迷宫,上一道题目还有障碍物,这里没有,但是解法类似。都是使用动态规划的方法,如下图:
在这里插入图片描述
C位置上拥有走法可以向右 或者向下,那么也就是 c的走法 = b的走法 + a的走法。因此我们可以定义状态**dp{i,j}**表示当前节点上的走法,那么也就可以推导出 dp{i,j} = dp{i,j+1}+dp{i+1,j}
在这里插入图片描述
这样也就可以自底向上的求出 起点位置上的走法了
在这里插入图片描述
具体实现代码如下:

package leetcode;

import org.junit.Test;
import org.junit.experimental.theories.FromDataPoints;

/**
 * @author liuzihao
 * @create 2019/12/24-11:24
 *一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
 * 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
 * 问总共有多少条不同的路径?
 *
 */
public class Demo62 {
    /**
     * 使用动态规划:
     * 首先定义DP[i][j]:为当前位置 可选择的走法的数量
     * 动态转移方程 DP[i][j] = DP[i][j+1] + DP[i+1][j]
     */
    @Test
    public void test(){
        System.out.println(uniquePaths(7, 3));
    }
     //m*n  m列 n行
    public int uniquePaths(int m, int n) {
        int [][] dp = new int[n][m];
        dp[n-1][m-1] = 1;
        for (int i = n-1; i >=0 ; i--) {
            for (int j = m-1; j>=0;j--){
                //跳过最终点的数据
                if (i == n-1&&j == m-1){
                    continue;
                }
                   dp[i][j] = _gendp(dp,i,j+1) + _gendp(dp,i+1,j);
            }
        }
        return dp[0][0];
    }
    //当操出边界时  为0
    int _gendp(int [][]dp,int i,int j ){
        if (i<dp.length&&j<dp[0].length){
            return dp[i][j];
        }
        return 0;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值