题目描述:
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
分析:
这道题与之前记录的一道迷宫题目类似,比那一题还简单走迷宫,上一道题目还有障碍物,这里没有,但是解法类似。都是使用动态规划的方法,如下图:
C位置上拥有走法可以向右 或者向下,那么也就是 c的走法 = b的走法 + a的走法。因此我们可以定义状态**dp{i,j}**表示当前节点上的走法,那么也就可以推导出 dp{i,j} = dp{i,j+1}+dp{i+1,j}
这样也就可以自底向上的求出 起点位置上的走法了
具体实现代码如下:
package leetcode;
import org.junit.Test;
import org.junit.experimental.theories.FromDataPoints;
/**
* @author liuzihao
* @create 2019/12/24-11:24
*一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
* 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
* 问总共有多少条不同的路径?
*
*/
public class Demo62 {
/**
* 使用动态规划:
* 首先定义DP[i][j]:为当前位置 可选择的走法的数量
* 动态转移方程 DP[i][j] = DP[i][j+1] + DP[i+1][j]
*/
@Test
public void test(){
System.out.println(uniquePaths(7, 3));
}
//m*n m列 n行
public int uniquePaths(int m, int n) {
int [][] dp = new int[n][m];
dp[n-1][m-1] = 1;
for (int i = n-1; i >=0 ; i--) {
for (int j = m-1; j>=0;j--){
//跳过最终点的数据
if (i == n-1&&j == m-1){
continue;
}
dp[i][j] = _gendp(dp,i,j+1) + _gendp(dp,i+1,j);
}
}
return dp[0][0];
}
//当操出边界时 为0
int _gendp(int [][]dp,int i,int j ){
if (i<dp.length&&j<dp[0].length){
return dp[i][j];
}
return 0;
}
}