数据组合 (1)

本文介绍了数据分析流程中的关键步骤,包括数据清理目标、数据整合技巧(如连接操作),以及如何使用pd.concat和df.append进行DataFrame操作,涵盖了数据准备、连接方法和基本的表结构管理。
摘要由CSDN通过智能技术生成

数据分析简介:

  • 在动手进行数据分析工作之前,需要进行数据清理工作,数据清理的主要目标是

    • 每个观测值成一行

    • 每个变量成一列

    • 每种观测单元构成一张表格

  • 数据整理好之后,可能需要多张表格组合到一起才能进行某些问题的分析

    • 一张表保存公司名称,另一张表保存股票价格

    • 单个数据集也可能会分割成多个,比如时间序列数据,每个日期可能再一个单独的文件

 

数据连接   

  • 组合数据的一种方法是使用“连接”(concatenation)

    • 连接是指把某行或某列追加到数据中

    • 数据被分成了多份可以使用连接把数据拼接起来

    • 把计算的结果追加到现有数据集,可以使用连接

添加行

 DataFrame纵向连接并重置索引

pd.concat([df1, df2, ...]) 多个df纵向连接返回一个新的df

 

df.append添加行数据

  • df.append函数:concat可以连接多个对象,如果只需要向现有DataFrame追加一个对象,可以通过append函数来实现

  • df添加列

  • 通过df['列名']=[列值列表]的方式添加

  • 多个df横向连接

  • 使用concat函数添加列,与添加行的方法类似,需要多传一个axis=1的参数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值