金融风控项目2 ---很细节(数据分析)

金融风控相关业务介绍

学习目标

  • 知道常见信贷风险

  • 知道机器学习风控模型的优势

  • 知道信贷领域常用术语含义

1 信贷&风控介绍

  • 信贷业务,就是贷款业务,是商业银行和互联网金融公司最重要的资产业务和主要赢利手段

    • 通过放款收回本金和利息,扣除成本后获得利润。

    • 贷款平台预测有信贷需求用户的还款情况,然后将本金借贷给还款概率大的用户

  • 信贷业务中的风险控制:

    • 信贷业务中,使用信用来预支金钱,在小额贷业务中往往没有抵押物,那么贷款方就会承担一定风险(用户不还钱)

    • 风控就是对用户的信用风险进行管理与规避,对于预测信用较差的人,不向其放款,即便放款,也会是较小的贷款额度和较高的利率

    • 信贷领域有两类风险:

      • 信用风险:借款人的的还款能力和还款意愿在贷款后出现问题的风险

      • 欺诈风险:借款人压根没想还钱,以诈骗为目的

    • 风控业务主要针对这两类风险

      • 信用评分系统:针对信用风险

      • 反欺诈系统:针对欺诈风险

    • 基于机器学习的人工智能风控模型对比传统人工审批:

      • 人工审批:效率低,对人员业务能力要求高,不适合金融零售业务场景

      • 机器学习模型:批量,迅速,准确,同时处理大量贷款请求(几万,几十万,上百万/天)

2 常见信贷产品及常见风险介绍

  • 信贷产品介绍

    个人信贷产品
    大额借贷房贷车贷
    小微企业贷
    小额借贷消费贷蚂蚁花呗,京东白条
    现金贷蚂蚁借呗,京东金条,微粒贷,各类网贷
    数据服务信用分服务芝麻信用分,京东小白分
    信用数据服务同盾数据,百融,集奥,大峰...
    • 现金贷 申请借款->放款给客户->客户还款

    额度500~3000
    利率24%~36%
    期限714,30天
    放款形式借给现金,不限场景
    可选功能订单展期
    现金贷产品年化利率现金贷产品年化利率
    苏宁金融24%国美易卡34%
    蚂蚁借呗24%马上消费35%
    微粒贷24%招联金融36%
    有钱花24%桔子分期36%
    京东金条24%拍拍贷36%
    360借条24%趣店36%
    小米金融24%捷信36%
    美团生活费24%宜人贷44%
    分期乐24%玖富50%
    • 消费贷

      信用卡,花呗,白条等产品,有账单日,还款日

      申请消费贷 -> 额度授信->客户使用消费贷消费

    额度1000~10000
    利率24%
    账期30天
    放款形式指定消费场景
    可选功能最低还款,账单展期,账单分期,停息挂账,临时额度,备用金
  • 产品类型:

    • 单期产品

    • 多期产品

    • 循环额度产品

  • 还款方式:

    • 砍头息:短期产品, (服务费)

    • 等额本金

    • 等额本息

  • 常见风险

    • 冒名顶替,黑产骗贷

    • 多头借贷,借新还旧

      • 客户:工行信用卡,招商信用卡... n张信用卡,网贷平台1,网贷平台2,网贷平台n

      • 用新借来的钱还已有的负债: 负债变多 -> 需新借更多 -> 设法提额 -> 信用资质不够 -> 出现流动性风险 -> 逾期

      • 特点:第三方数据:多头申请记录

        APP安装:大量借款类APP

        短信:大量申请短信,提醒还款,催收短信

    • POS机套现,以少换多

      • 购买有支付牌照机构的POS机进行套现,手续费0.6%

    • 针对风控模型,制作数据

      • 使用花呗在天猫购物,对花呗账单做分期

      • 买入存金宝,一个礼拜后追加存金宝资金

      • 购买***元基金

      • 保持余额宝XXX元不动,余额宝累计收益做到 XX元

      • 购买XXXX保险

3 风控相关术语介绍

解释
DPDDay past due 逾期天数 DPD0为到期当日,DPD1为逾期一日,DPD7为逾期一周
FPDFirst time past due 首次逾期天数
F/S/T/QPD首次 二次 三次 四次 逾期天数
M1逾期 [1, 30)天 M 是英文“Months”的首写字母
M1+逾期[30, inf]天
default坏账
delinquency拖欠
flow rate流动率 一般指M1向M2,M2向M3转移的比例
bad rate坏账率 当月不良资产数/总资产数
vintage账龄分析

4 风控业务案例

4.1 案例背景介绍

  • 通过对业务数据分析了解信贷业务状况

  • 数据集说明

    • 从开源数据改造而来,基本反映真实业务数据

    • 销售,客服可以忽略

    • 账单周期,放款日期

    • 账单金额-实收金额 = 未收金额

    • 应付日期为还款时间

    • 账期分成两种 60天和90天

    • 实际到账日为空白 说明没还钱

  • 通过对贷后业务数据的分析要分析出如下内容

    • 每个季度账单金额和坏账率(逾期90天以上)

      • 所有未收金额/所有账单金额

      • 未收金额 = 账单金额-实收金额

    • 每个季度60天账期 入催率,90天账单 入催率

    • 不同逾期天数的回款情况

      • 历史逾期天数 有逾期 已经还完了

      • 当前逾期天数 现在还欠着钱,没还完

4.2 代码实现

  • 加载数据

<span style="background-color:#f8f8f8"><span style="color:#333333"><span style="color:#770088">import</span> <span style="color:#000000">pandas</span> <span style="color:#770088">as</span> <span style="color:#000000">pd</span>
<span style="color:#770088">import</span> <span style="color:#000000">datetime</span>
<span style="color:#770088">from</span> <span style="color:#000000">pyecharts</span>.<span style="color:#000000">charts</span> <span style="color:#770088">import</span> <span style="color:#981a1a">*</span>
<span style="color:#770088">from</span> <span style="color:#000000">pyecharts</span> <span style="color:#770088">import</span> <span style="color:#000000">options</span> <span style="color:#770088">as</span> <span style="color:#000000">opts</span>
<span style="color:#000000">df1</span> = <span style="color:#000000">pd</span>.<span style="color:#000000">read_excel</span>(<span style="color:#aa1111">'data/业务数据.xls'</span>) 
<span style="color:#aa5500">#要使用原始数据构建新指标,所以保留原始数据,copy新的数据,在新的数据中创建新指标</span>
<span style="color:#000000">df2</span> = <span style="color:#000000">df1</span>.<span style="color:#000000">copy</span>()
<span style="color:#000000">df2</span>.<span style="color:#000000">head</span>()</span></span>

显示结果

销售账单状态账单周期账单金额开票金额实收金额未收金额预计付款日应付日期商务催收日期账期实际到账日开票日期客服
0s101未确认2019-0529805.0NaNNaNNaN2019-07-312019-07-312019-08-1560NaNNaNa201
1s102未确认2019-051572.6NaNNaNNaN2019-07-312019-07-312019-08-1560NaNNaNa202
2s103已确认2019-04487551.2487551.2NaN487551.22019-06-302019-06-302019-07-1560NaN05-16a203
3s104已确认2019-04378835.0378835.0NaN378835.02019-07-312019-07-312019-08-1590NaN05-08a204
4s105已确认2019-04326866.0326866.0NaN326866.02019-07-312019-07-312019-08-1590NaN05-10a205
  • 查看数据基本情况

<span style="background-color:#f8f8f8"><span style="color:#333333"><span style="color:#000000">df2</span>.<span style="color:#000000">info</span>()</span></span>

显示结果

<span style="background-color:#f8f8f8"><class <span style="color:#aa1111">'pandas.core.frame.DataFrame'</span>>
RangeIndex: <span style="color:#116644">5257</span> entries, <span style="color:#116644">0</span> to <span style="color:#116644">5256</span>
Data columns (total <span style="color:#116644">14</span> columns):
<span style="color:#aa5500">#   Column  Non-Null Count  Dtype  </span>
<span style="color:#0000cc">---</span>  <span style="color:#0000cc">------</span>  <span style="color:#0000cc">--------------</span>  <span style="color:#0000cc">-----</span>  
<span style="color:#116644">0</span>   销售      <span style="color:#116644">5257</span> non-null   object 
<span style="color:#116644">1</span>   账单状态    <span style="color:#116644">5257</span> non-null   object 
<span style="color:#116644">2</span>   账单周期    <span style="color:#116644">5257</span> non-null   object 
<span style="color:#116644">3</span>   账单金额    <span style="color:#116644">5257</span> non-null   float64
<span style="color:#116644">4</span>   开票金额    <span style="color:#116644">5010</span> non-null   float64
<span style="color:#116644">5</span>   实收金额    <span style="color:#116644">4470</span> non-null   float64
<span style="color:#116644">6</span>   未收金额    <span style="color:#116644">5010</span> non-null   float64
<span style="color:#116644">7</span>   预计付款日   <span style="color:#116644">5256</span> non-null   object 
<span style="color:#116644">8</span>   应付日期    <span style="color:#116644">5257</span> non-null   object 
<span style="color:#116644">9</span>   商务催收日期  <span style="color:#116644">5257</span> non-null   object 
<span style="color:#116644">10</span>  账期      <span style="color:#116644">5257</span> non-null   int64  
<span style="color:#116644">11</span>  实际到账日   <span style="color:#116644">4387</span> non-null   object 
<span style="color:#116644">12</span>  开票日期    <span style="color:#116644">4996</span> non-null   object 
<span style="color:#116644">13</span>  客服      <span style="color:#116644">5257</span> non-null   object 
dtypes: float64(4), int64(1), object(9)
memory usage: <span style="color:#116644">575</span>.1<span style="color:#981a1a">+</span> KB</span>
<span style="background-color:#f8f8f8"><span style="color:#333333"><span style="color:#000000">df2</span>.<span style="color:#000000">describe</span>()</span></span>

显示结果

账单金额开票金额实收金额未收金额账期
count5.257000e+035.010000e+034.470000e+035.010000e+035257.000000
mean4.073241e+044.096896e+044.082419e+044.684636e+0364.539661
std8.176172e+048.007245e+047.970628e+042.888464e+0415.622765
min0.000000e+002.500000e+010.000000e+000.000000e+000.000000
25%5.103000e+035.300000e+035.112250e+030.000000e+0060.000000
50%1.436500e+041.486560e+041.434000e+040.000000e+0060.000000
75%4.178000e+044.220250e+044.170750e+040.000000e+0075.000000
max1.508796e+061.356215e+061.301665e+061.277098e+0690.000000
  • 数据处理,填充缺失值,将日期时间类型转换成datetime类型

<span style="background-color:#f8f8f8"><span style="color:#333333"><span style="color:#aa5500"># 获取最大的日期,作为当前时间</span>
<span style="color:#000000">today_time</span> = <span style="color:#000000">pd</span>.<span style="color:#000000">to_datetime</span>(<span style="color:#000000">df2</span>.<span style="color:#000000">实际到账日</span>.<span style="color:#000000">fillna</span>(<span style="color:#aa1111">'0'</span>).<span style="color:#000000">max</span>())
​
<span style="color:#000000">df2</span>[<span style="color:#aa1111">'实收金额'</span>] = <span style="color:#000000">df2</span>.<span style="color:#000000">实收金额</span>.<span style="color:#000000">fillna</span>(<span style="color:#116644">0</span>)
<span style="color:#000000">df2</span>[<span style="color:#aa1111">'开票金额'</span>] = <span style="color:#000000">df2</span>.<span style="color:#000000">开票金额</span>.<span style="color:#000000">fillna</span>(<span style="color:#116644">0</span>)
<span style="color:#000000">df2</span>[<span style="color:#aa1111">'未收金额'</span>] = <span style="color:#000000">df2</span>.<span style="color:#000000">未收金额</span>.<span style="color:#000000">fillna</span>(<span style="color:#116644">0</span>)
​
<span style="color:#000000">df2</span>[<span style="color:#aa1111">'账单周期'</span>] = <span style="color:#000000">pd</span>.<span style="color:#000000">to_datetime</span>(<span style="color:#000000">df2</span>.<span style="color:#000000">账单周期</span>)
<span style="color:#000000">df2</span>[<span style="color:#aa1111">'应付日期'</span>] = <span style="color:#000000">pd</span>.<span style="color:#000000">to_datetime</span>(<span style="color:#000000">df2</span>.<span style="color:#000000">应付日期</span>)
​
<span style="color:#000000">df2</span>[<span style="color:#aa1111">'实际到账日'</span>] = <span style="color:#000000">pd</span>.<span style="color:#000000">to_datetime</span>(<span style="color:#000000">df2</span>.<span style="color:#000000">实际到账日</span>).<span style="color:#000000">fillna</span>(<span style="color:#000000">today_time</span>)</span></span>
  • 为了后续计算,在原始数据基础上构造新的字段:是否逾期,是否逾期90天,未收金额2(校验原始数据中的未收金额),当前逾期天数,历史逾期天数

<span style="background-color:#f8f8f8"><span style="color:#333333"><span style="color:#000000">df2</span>[<span style="color:#aa1111">'是否到期'</span>] = <span style="color:#000000">df2</span>.<span style="color:#000000">apply</span>(<span style="color:#770088">lambda</span> <span style="color:#000000">x</span> : <span style="color:#116644">0</span> <span style="color:#770088">if</span> <span style="color:#000000">x</span>.<span style="color:#000000">应付日期</span> <span style="color:#981a1a">></span> <span style="color:#000000">today_time</span> <span style="color:#770088">else</span> <span style="color:#116644">1</span>,<span style="color:#000000">axis</span>=<span style="color:#116644">1</span>)
​
<span style="color:#000000">df2</span>[<span style="color:#aa1111">'是否到期90天'</span>] =  ( <span style="color:#000000">today_time</span> <span style="color:#981a1a">-</span> <span style="color:#000000">df2</span>.<span style="color:#000000">应付日期</span> ).<span style="color:#000000">map</span>(<span style="color:#770088">lambda</span> <span style="color:#000000">x</span> : <span style="color:#116644">1</span> <span style="color:#770088">if</span> <span style="color:#000000">x</span>.<span style="color:#000000">days</span> <span style="color:#981a1a">></span>= <span style="color:#116644">90</span> <span style="color:#770088">else</span> <span style="color:#116644">0</span>)
​
<span style="color:#000000">df2</span>[<span style="color:#aa1111">'未收金额2'</span>] =  (<span style="color:#000000">df2</span>.<span style="color:#000000">账单金额</span> <span style="color:#981a1a">-</span> <span style="color:#000000">df2</span>.<span style="color:#000000">实收金额</span>)
​
<span style="color:#000000">df2</span>[<span style="color:#aa1111">'历史逾期天数'</span>] = <span style="color:#000000">df2</span>.<span style="color:#000000">apply</span>(<span style="color:#770088">lambda</span> <span style="color:#000000">x</span> : (<span style="color:#000000">x</span>.<span style="color:#000000">实际到账日</span> <span style="color:#981a1a">-</span>  <span style="color:#000000">x</span>.<span style="color:#000000">应付日期</span>).<span style="color:#000000">days</span> <span style="color:#770088">if</span> <span style="color:#000000">x</span>.<span style="color:#000000">未收金额2</span> == <span style="color:#116644">0</span>  <span style="color:#770088">else</span>  (<span style="color:#000000">today_time</span> <span style="color:#981a1a">-</span> <span style="color:#000000">x</span>.<span style="color:#000000">应付日期</span>).<span style="color:#000000">days</span>,<span style="color:#000000">axis</span>=<span style="color:#116644">1</span>)
​
<span style="color:#000000">df2</span>[<span style="color:#aa1111">'当前逾期天数'</span>] = <span style="color:#000000">df2</span>.<span style="color:#000000">apply</span>(<span style="color:#770088">lambda</span> <span style="color:#000000">x</span> : (<span style="color:#000000">x</span>.<span style="color:#000000">历史逾期天数</span>) <span style="color:#770088">if</span> <span style="color:#000000">x</span>.<span style="color:#000000">未收金额2</span> <span style="color:#981a1a">></span> <span style="color:#116644">0</span>  <span style="color:#770088">else</span> <span style="color:#116644">0</span> ,<span style="color:#000000">axis</span> = <span style="color:#116644">1</span>) </span></span>
  • 查询实际到账日期字段得知当前最近的到账日为2019年5月17日,如果以2019年5月17日为观察点,有些贷款还没到还款日,没法统计DPD90的数据,所以,这里只统计2019年之前的情况,下面将对应时间段的数据取出

<span style="background-color:#f8f8f8"><span style="color:#333333"><span style="color:#000000">df3</span> =<span style="color:#000000">df2</span>.<span style="color:#000000">copy</span>()
<span style="color:#aa5500">#创建’账单季度‘字段,将日期转换成季度</span>
<span style="color:#000000">df3</span>[<span style="color:#aa1111">'账单季度'</span>] = <span style="color:#000000">df3</span>[<span style="color:#aa1111">'账单周期'</span>].<span style="color:#000000">map</span>(<span style="color:#770088">lambda</span> <span style="color:#000000">x</span> : <span style="color:#000000">x</span>.<span style="color:#000000">to_period</span>(<span style="color:#aa1111">'Q'</span>))
<span style="color:#aa5500">#提取2017年3季度到2018年4季度数据</span>
<span style="color:#000000">df3</span> = <span style="color:#000000">df3</span>[(<span style="color:#000000">df3</span>[<span style="color:#aa1111">'账单季度'</span>]<span style="color:#981a1a"><</span>=<span style="color:#aa1111">'2018Q4'</span>) <span style="color:#981a1a">&</span> (<span style="color:#000000">df3</span>[<span style="color:#aa1111">'账单季度'</span>]<span style="color:#981a1a">></span>=<span style="color:#aa1111">'2017Q3'</span>)]
<span style="color:#000000">df3</span>.<span style="color:#000000">shape</span></span></span>

显示结果

<span style="background-color:#f8f8f8">(3856, 21)</span>
  • 按照季度统计账单金额,到期金额,和逾期金额

<span style="background-color:#f8f8f8"><span style="color:#333333">#账单金额
fn1 = df3.groupby('账单季度')[['账单金额']].sum()
fn1.columns = ['账单金额']
fn1
</span></span>

显示结果

账单金额
账单季度
2017Q38247952.62
2017Q411643604.99
2018Q117149674.79
2018Q231097661.29
2018Q338292071.12
2018Q451963089.64
<span style="background-color:#f8f8f8"><span style="color:#333333">#90天到期金额
df4 = df3[(df3.是否到期90天 == 1)]
fn2 = df4.groupby('账单季度')[['账单金额']].sum()
fn2.columns = ['到期金额']
fn2
</span></span>

显示结果

到期金额
账单季度
2017Q38247952.62
2017Q411643604.99
2018Q117149674.79
2018Q231097661.29
2018Q338292071.12
2018Q428265677.59
<span style="background-color:#f8f8f8"><span style="color:#333333">df4 = df3[(df3.是否到期90天 == 1)]
fn3 = df4.groupby('账单季度')[['未收金额2']].sum()
fn3.columns = ['当前逾期90+金额']
fn3
</span></span>

显示结果

当前逾期90+金额
账单季度
2017Q363883.0
2017Q457380.0
2018Q164283.0
2018Q2106930.0
2018Q3412920.1
2018Q4304183.0
  • 合并数据计算逾期率

<span style="background-color:#f8f8f8"><span style="color:#333333">dfs = [fn1,fn2,fn3]
final1 = pd.concat(dfs,axis=1)
final1
</span></span>

显示结果

账单金额到期金额当前逾期90+金额
账单季度
2017Q38247952.628247952.6263883.0
2017Q411643604.9911643604.9957380.0
2018Q117149674.7917149674.7964283.0
2018Q231097661.2931097661.29106930.0
2018Q338292071.1238292071.12412920.1
2018Q451963089.6428265677.59304183.0
<span style="background-color:#f8f8f8"><span style="color:#333333">final1['90+净坏账率'] = round(final1['当前逾期90+金额'] / final1.到期金额,3)
final1
</span></span>

显示结果

账单金额到期金额当前逾期90+金额90+净坏账率
账单季度
2017Q38247952.628247952.6263883.00.008
2017Q411643604.9911643604.9957380.00.005
2018Q117149674.7917149674.7964283.00.004
2018Q231097661.2931097661.29106930.00.003
2018Q338292071.1238292071.12412920.10.011
2018Q451963089.6428265677.59304183.00.011
  • pyecharts绘图

<span style="background-color:#f8f8f8"><span style="color:#333333">bar = (
    Bar()
    .add_xaxis(list(final1.index.values.astype(str)))
    .add_yaxis(
        "账单金额",
        list(final1.账单金额),
        yaxis_index=0,
        color="#5793f3",
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="90+净坏账率"),
    )
    .extend_axis(
        yaxis=opts.AxisOpts(
            name="90+净坏账率",
            type_="value",
            min_=0,
            max_=0.014,
            position="right",
            axisline_opts=opts.AxisLineOpts(
                linestyle_opts=opts.LineStyleOpts(color="#d14a61")
            ),
            axislabel_opts=opts.LabelOpts(formatter="{value}"),
        )
    )
)
line = (
    Line()
    .add_xaxis(list(final1.index.values.astype(str)))
    .add_yaxis(
        "90+净坏账率",
        list(final1['90+净坏账率']),
        yaxis_index=1,
        color="#675bba",
        label_opts=opts.LabelOpts(is_show=False),
    )
)
bar.overlap(line).render_notebook()
</span></span>

显示结果

 

  • 计算每个季度的60天账单入催金额,90天账单入催金额

<span style="background-color:#f8f8f8"><span style="color:#333333">#60天账期的账单金额
df4 = df3[(df3.账期 == 60)&(df3.是否到期 == 1)]
fn1 = df4.groupby('账单季度')[['账单金额']].sum()
fn1.columns = ['60天账期的账单金额']
#60天账期的入催金额
df4 = df3[(df3.账期 == 60)&(df3.是否到期 == 1)&(df3.历史逾期天数>0)]
fn2 = df4.groupby('账单季度')[['未收金额2']].sum()
fn2.columns = ['60天账期的入催金额']
#90天账期的账单金额
df4 = df3[(df3.账期 == 90)&(df3.是否到期 == 1)]
fn3 = df4.groupby('账单季度')[['账单金额']].sum()
fn3.columns = ['90天账期的账单金额']
#90天账期的入催金额
df4 = df3[(df3.账期 == 90)&(df3.是否到期 == 1)&(df3.历史逾期天数>0)]
fn4 = df4.groupby('账单季度')[['未收金额2']].sum()
fn4.columns = ['90天账期的入催金额']
</span></span>
  • 计算入催率

<span style="background-color:#f8f8f8"><span style="color:#333333">dfs = [fn1,fn2,fn3,fn4]
final2 = pd.concat(dfs,axis=1)
# final2 = fn1.merge(fn2,on='账单季度').merge(fn3,on='账单季度',how='left').merge(fn4,on='账单季度')
final2['60天账期入催率'] = round(final2['60天账期的入催金额'] / final2['60天账期的账单金额'],3)
final2['90天账期入催率'] = round(final2['90天账期的入催金额']/final2['90天账期的账单金额'],3)
final2
</span></span>

显示结果

60天账期的账单金额60天账期的入催金额90天账期的账单金额90天账期的入催金额60天账期入催率90天账期入催率
账单季度
2017Q34854770.9436983.02769264.01900.00.0080.001
2017Q46737327.9952750.03921491.00.00.0080.000
2018Q112106356.7962460.04244304.0800.00.0050.000
2018Q219234086.8713590.08427775.00.00.0010.000
2018Q322830710.42380265.19835629.08235.00.0170.001
2018Q426337959.52584789.517706430.0325141.00.0220.018
  • pyecharts绘图

<span style="background-color:#f8f8f8"><span style="color:#333333">line = (
    Line()
    .add_xaxis(list(final1.index.values.astype(str)))
    .add_yaxis(
        "60天账期入催率",
        list(final2['60天账期入催率']),
        yaxis_index=0,
        color="#675bba",
        label_opts=opts.LabelOpts(is_show=False),
    )
    .set_global_opts(
    title_opts=opts.TitleOpts(title="不同账期入催率"),
    )
    .add_xaxis(list(final1.index.values.astype(str)))
    .add_yaxis(
        "90天账期入催率",
        list(final2['90天账期入催率']),
        yaxis_index=0,
        color="#d14a61",
        label_opts=opts.LabelOpts(is_show=False),
    )
)
line.render_notebook()
</span></span>

显示结果

 

  • 不同逾期天数的回收情况

<span style="background-color:#f8f8f8"><span style="color:#333333">df6 = df3[(df3.未收金额2 == 0)&(df3.是否到期 == 1)].copy()
#使用cut,讲数据按照逾期天数分箱,然后添加分箱之后结果标签
df6['历史逾期天数'] = pd.cut(df6['历史逾期天数'],bins=[-999,0,5,10,15,20,30,60,90,999],right=True,
                       labels=['0','1-5','6-10','11-15','16-20','21-30','31-60','61-90','91+'])
final3 = df6.groupby('历史逾期天数')[['账期']].count()
final3.columns = ['回收账单数']
final3
</span></span>

显示结果

回收账单数
历史逾期天数
02400
1-5358
6-10235
11-15215
16-2092
21-30189
31-60156
61-9060
91+88
  • pyecharts绘图

<span style="background-color:#f8f8f8"><span style="color:#333333">ydata = final3['回收账单数'].values.tolist()
bar = (
    Bar()
    .add_xaxis(list(final3.index.values.tolist()))
    .add_yaxis("收回账单数",ydata,yaxis_index=0,color="#675bba")
    .set_global_opts(
    title_opts=opts.TitleOpts(title="不同逾期天数的已收回账单数"),
    )
)
bar.render_notebook()
</span></span>

显示结果

 

4.3 业务解读

  • 从数据中看出,在2018年Q2季度之前,运营策略比较保守,坏账金额和入催率都比较低,

  • 2018年Q2之后,有可能是由于运营策略调整,给更多的人放贷,但坏账率和入催率均在3%一下,在合理范围内

  • 不同逾期天数收回账单的数据看,30天内能收回绝大部分账单

小结

  • 知道常见信贷风险

    • 信用风险

    • 欺诈风险

  • 知道机器学习风控模型的优势

    • 批量,迅速,准确,同时处理大量贷款请求

    • 在零售信贷业务场景下,与人工审核相比优势显著

  • 知道信贷领域常用术语含义

    • DPD 逾期天数

    • FPD 首次逾期天数

    • bad rate 坏账率

    • M1 逾期一个月以内

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值