该题是字典树的典型例题,可以作为字典树模板背下来。在需要频繁查找字符串或字符前缀集合时可以用到,牺牲空间达到O(n)的查找时间。
题目
Trie(发音类似 “try”)或者说 前缀树 是一种树形数据结构,用于高效地存储和检索字符串数据集中的键。这一数据结构有相当多的应用情景,例如自动补完和拼写检查。
请你实现 Trie 类:
Trie() 初始化前缀树对象。
void insert(String word) 向前缀树中插入字符串 word 。
boolean search(String word) 如果字符串 word 在前缀树中,返回 true(即,在检索之前已经插入);否则,返回 false 。
boolean startsWith(String prefix) 如果之前已经插入的字符串 word 的前缀之一为 prefix ,返回 true ;否则,返回 false 。
示例:
输入
["Trie", "insert", "search", "search", "startsWith", "insert", "search"]
[[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]]
输出
[null, null, true, false, true, null, true]
解释
Trie trie = new Trie();
trie.insert("apple");
trie.search("apple"); // 返回 True
trie.search("app"); // 返回 False
trie.startsWith("app"); // 返回 True
trie.insert("app");
trie.search("app"); // 返回 True
提示:
1 <= word.length, prefix.length <= 2000
word 和 prefix 仅由小写英文字母组成
insert、search 和 startsWith 调用次数 总计 不超过 3 * 10^4 次
C++代码(模板)
class Trie {
private:
vector<Trie *> children;//指向26棵子树的指针数组 表示'a'~'z'
bool haveWord;//表示该子树是否为字符串结尾
//即该结点是否为已有的某个字符串的最后一个字符
public:
Trie():children(26),haveWord(false) {}//使用构造函数初始值列表初始化
void insert(string word) {//向字典树插入一个单词
Trie *node=this;
for(auto &aChar : word){
if(!node->children[aChar-'a']) node->children[aChar-'a']=new Trie();//这一层的字典树的子树中,还没有这个字母,那么新建一个
node=node->children[aChar-'a'];//树中已经有该字母
}
node->haveWord=true;
}
bool search(string word) {//查找字典树中有没有这个单词
Trie *node=this;
for(auto &aChar : word){
if(!node->children[aChar-'a']) return false;//字典树的这一层子树中,还没有这个字母,查找失败
node=node->children[aChar-'a'];
}
return node->haveWord;
}
bool startsWith(string prefix) {//查找字典树中有没有以这个字符串为前缀的单词
Trie *node=this;
for(auto &aChar : prefix){
if(!node->children[aChar-'a']) return false;//这一层的字典树的子树中,还没有这个字母,查找失败
node=node->children[aChar-'a'];
}
return true;
}
};
Java代码(模板)
class Trie {
private Trie[] children; // 指向26棵子树的数组 表示'a'~'z'
private boolean isEnd; // 表示该子树是否为字符串结尾
// 即该结点是否为已有的某个字符串的最后一个字符
public Trie() {
children = new Trie[26];
isEnd = false;
}
public void insert(String word) { // 向字典树插入一个单词
Trie node = this;
for (int i = 0; i < word.length(); i++) {
char ch = word.charAt(i);
int index = ch - 'a';
if (node.children[index] == null) {
node.children[index] = new Trie(); // 这一层的字典树的子树中,还没有这个字母,那么新建一个
}
node = node.children[index];
}
node.isEnd = true;
}
public boolean search(String word) { // 查找字典树中有没有这个单词
Trie node = searchPrefix(word);
return node != null && node.isEnd;
}
public boolean startsWith(String prefix) { // 查找字典树中有没有以这个字符串为前缀的单词
return searchPrefix(prefix) != null;
}
private Trie searchPrefix(String prefix) {
Trie node = this;
for (int i = 0; i < prefix.length(); i++) {
char ch = prefix.charAt(i);
int index = ch - 'a';
if (node.children[index] == null) {
return null;
}
node = node.children[index];
}
return node;
}
}