2024年最全Python数据分析之数据预处理_python预处理数据

.

.

,

n

1

(x\_j,y\_j),j=1,2,…,n+1

(x_j,y_j),j=1,2,…,n+1,将样本点代入上述方程a_0+a_1x_1+a_2x_12+…+a_nx_1n=y_1a0​+a1​x1​+a2​x12​+…+an​x1n​=y1​a_0+a_1x_2+a_2x_22+…+a_nx_2n=y_2a0​+a1​x2​+a2​x22​+…+an​x2n​=y2​…a_0+a_1x_{n+1}+a_2x_{n+1}2+…+a_nx_{n+1}n=y_{n+1}a0​+a1​xn+1​+a2​xn+12​+…+an​xn+1n​=yn+1​

显然以上线性方程组的系数矩阵为范德蒙矩阵,因此,有唯一解,即有唯一

f

(

x

)

f(x)

f(x),在实际计算中,直接求解上述矩阵比较复杂。拉格朗日插值法应运而生,拉格朗日插值法实际上是一种求

f

(

x

)

f(x)

f(x)的计算方法:f(x)=\sum_{i=1}^{n+1} y_i\prod_{j\neq i}\frac{(x-x_j)}{(x_i-x_j)}f(x)=i=1∑n+1​yi​j=i∏​(xi​−xj​)(x−xj​)​

观察上式可以发现,这是一个x的n阶多项式,且过点所有

(

x

_

m

,

y

_

m

)

(x\_m,y\_m)

(x_m,y_m),即上式即为所求。

插值实例

df = pd.read\_excel('Python数据分析与挖掘实战/chapter3/demo/data/catering\_sale.xls')
df.head(3)

日期销量
02015-03-0151.0
12015-02-282618.2
22015-02-272608.4

df.isnull().sum()

日期 0
销量 1
dtype: int64

可以看出,销量存在缺失值,使用拉格朗日法对缺失值进行插补,首先将异常值过滤为缺失值,然后对每一列的缺失值进行插值,插值的自变量为缺失值的前后k个数据的index。

from scipy.interpolate import lagrange

df[‘销量’][(df[‘销量’] < 400) | (df[‘销量’] > 5000)] = None # 过滤异常值,将其变为空值

def lagrange_(s,n,k=4):
“”"
s:需要插值的列
n:缺失值的index
k:插值使用前后k个数据
“”"
l = list(range(n-k,n)) + list(range(n+1,n+1+k))
y = s[[i for i in l if i >=0]] #取出前后k项数据的值
y = y[y.notnull()] #剔除空值
return lagrange(y.index, list(y))(j)

#对整个datafram进行插值
for i in df.columns:
for j in range(len(df)):
if df[i].isnull()[j]:
df[i][j]=lagrange_(df[i],j)
df.to_excel(‘outputfile.xlsx’)

异常值处理
异常值处理方法方法描述
删除含有异常值的记录直接将含有异常值的记录删除
视为缺失值将异常值视为缺失值,利用缺失值处理的方法进行处理
平均值修正可用前后两个观测值的平均值修正该异常值
不处理直接在具有异常值的数据集.上进行挖掘建模

数据集成

  • 数据集成:将多个数据源合并存放在一个一致的数据存储(如数据仓库)中的过程。

数据挖掘需要的数据往往分布在不同的数据源中,这时需要进行数据集成。在数据集成时,来自多个数据源的现实世界实体的表达形式是不一样的,有可能不匹配,要考虑实体识别问题和属性冗余问题,从而将源数据在最低层上加以转换、提炼和集成。

实体识别
  • 实体识别:从不同数据源识别出现实世界的实体,它的任务是统一不同源数据的矛盾之处,常见形式如下:

    1. 同名异义:数据源A中的属性ID和数据源B中的属性ID分别描述的是菜品编号和订单编号,即描述的是不同的实体。
    2. 异名同义:数据源A中的sales__dt和数据源B中的sales_date都是描述销售日期的,即A.sales__dt=B.sales_date。
    3. 单位不统一:描述同一个实体分别用的是国际单位和中国传统的计量单位。

检测和解决这些冲突就是实体识别的任务。

冗余属性识别

数据集成往往导致数据冗余,例如:

  • 同一属性多次出现;
  • 同–属性命名不一致导致重复。

仔细整合不同源数据能减少甚至避免数据冗余与不一致,从而提高数据挖掘的速度和质量。对于冗余属性要先分析,检测到后再将其删除。

有些冗余属性可以用相关分析检测。给定两个数值型的属性A和B,根据其属性值,用相关系数度量一个属性在多大程度上蕴含另一一个属性。

数据变换

数据变换主要是对数据进行规范化处理,将数据转换成“适当的”形式,以适用于挖掘任务及算法的需要。

简单函数变换

简单函数变换是对原始数据进行某些数学函数变换,常用的变换包括平方、开方、取对数、差分运算等,即:
x’=x^2x′=x2x’=\sqrt xx′=x​x’=log xx′=logxx’=f(x_{k+1})-f(x_{k})x′=f(xk+1​)−f(xk​)

规范化
  • 数据规范化(归一化):对数据进行标准化处理,将数据按照比例进行缩放,使之落入一个特定的区域,便于进行综合分析。

归一化处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲,数值间的差别可能很大,不进行处理可能会影响到数据分析的结果。为了消除指标之间的量纲和取值范围差异的影响,需要进行归一化。如将工资收入属性值映射到[-1,1]或者[0,1]内。数据规范化对于基于距离的挖掘算法尤为重要。

  • 最小-最大规范化(MinMaxScaler)

x’=\frac{x-x_{min}}{x_{max}-x_{min}}x′=xmax​−xmin​x−xmin​​

from sklearn.preprocessing import MinMaxScaler

data = pd.read_excel(‘Python数据分析与挖掘实战/chapter4/demo/data/normalization_data.xls’,header=None)
data

0123
0785216022863
1144-600-5212245
295-457468-1283
3695966951054
41905276912051
51014034702487
61464134352571

scaler = MinMaxScaler().fit(data)
pd.DataFrame(scaler.transform(data))

0123
00.0743800.9372910.9235201.000000
10.6198350.0000000.0000000.850941
20.2148760.1195650.8133220.000000
30.0000001.0000001.0000000.563676
41.0000000.9423080.9967110.804149
50.2644630.8386290.8149670.909310
60.6363640.8469900.7861840.929571
  • 零均值规范化(StandardScaler)

x’=\frac{x-\mu}{\sigma}x′=σx−μ​

依然使用上述数据:

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler().fit(data)
pd.DataFrame(scaler.transform(data))

0123
0-0.9779260.6868110.5017510.862099
10.653127-1.714885-2.3688910.398987
2-0.557806-1.4085130.159216-2.244798
3-1.2003420.8474950.739480-0.493515
41.7899220.6996660.7292550.253609
5-0.4095290.4340010.1643290.580335
60.7025530.4554250.0748610.643283
连续变量离散化

一些数据挖掘算法,特别是某些分类算法( 如ID3算法、Apriori 算法等),要求数据是分类属性形式。这样,常常需要将连续变量变换成分类变量,即连续变量离散化。

离散化的基本方法

离散化的基本方法就是将连续变量的值区间划分为若干个区间,用不同符号代表不同区间中的值。

常用离散化的方法

  • 等宽分组:将值域划分为宽度相等的区间,区间个数由用户指定,类似于制作频率分布表。

下面将“肝气郁结证型系数”数据划分为4个不同的类。

data = pd.read_excel(‘Python数据分析与挖掘实战/chapter4/demo/data/discretization_data.xls’)
data.head(3)

肝气郁结证型系数
00.056
10.488
20.107
k=4
r = pd.cut(data\['肝气郁结证型系数'\],k,labels=range(k))
for i in range(4):
    plt.plot(data\[r==i\],\[i\]\*(data\[r==i\].count()\['肝气郁结证型系数'\]),'o')
p = plt.title('等宽分组结果')

  • 等频分组:分组后每个区间数据量相同。

r = pd.qcut(data[‘肝气郁结证型系数’],k,labels=range(k))
for i in range(k):
plt.plot(data[ri],[i]*(data[ri].count()[‘肝气郁结证型系数’]),‘o’)
p = plt.title(‘等频分组结果’)

  • 聚类分组:使用聚类算法进行分组。
from sklearn.cluster import KMeans

KM = KMeans(n\_clusters=k).fit(data\['肝气郁结证型系数'\].values.reshape(len(data\['肝气郁结证型系数'\].values),1))
r = KM.labels\_
for i in range(k):
    plt.plot(data\[r==i\],\[i\]\*(data\[r==i\].count()\['肝气郁结证型系数'\]),'o')
p = plt.title('等频分组结果')

属性构造

在数据挖掘的过程中,为了提取更有用的信息,挖掘更深层次的模式,提高挖掘结果的精度,我们需要利用已有的属性集构造出新的属性,并加入到现有的属性集合中。比如,进行防窃漏电诊断建模时,已有的属性包括供入电量、供出电量(线路上各大用户用电量之和)。理论上供入电量和供出电量应该是相等的,但是由于在传输过程中存在电能损耗,使得供入电量略大于供出电量,如果该条线路上的一个或多个大用户存在窃漏电行为,会使得供入电量明显大于供出电量。
  为了判断是否有大用户存在窃漏电行为,可以构造出一个新的指标——线损率,该过程就是构造属性。新构造的属性线损率按如下公式计算。线损率=\frac{供入电量-供出电量}{供入电量}\times100%线损率=供入电量供入电量−供出电量​×100%线损率的正常范围一般在3%~15%,如果远远超过该范围,就可以认为该条线路的大用户很可能存在窃漏电等用电异常行为。

数据规约

在大数据集上进行复杂的数据分析和挖掘需要很长的时间,数据规约产生更小但保持原数据完整性的新数据集。在规约后的数据集上进行分析和挖掘将更有效率。数据规约的意义在于:

  • 降低无效、错误数据对建模的影响,提高建模的准确性;
  • 少量且具代表性的数据将大幅缩减数据挖掘所需的时间;
  • 降低储存数据的成本。
特征规约

特征规约通过特征合并来创建新特征,或者直接通过删除不相关的特征(维)来减少数据维数,从而提高数据挖掘的效率、降低计算成本。特征规约的目标是寻找出最小的特征子集并确保新数据子集的概率分布尽可能地接近原来数据集的概率分布。特征规约有合并特征、向前选择、向后删除、主成分分析等方法。

简单来说,特征规约就是减少数据列数。

  • 主成分分析的python实现

逐步向前选择、逐步向后删除和决策树归纳是属于直接删除不相关属性(维)方法。主成分分析是一种用于连续属性的数据降维方法,它构造了原始数据的-一个正交变换,新空间的基底去除了原始空间基底下数据的相关性,只需使用少数新变量就能够解释原始数据中的大部分变异。在应用中,通常是选出比原始变量个数少,能解释大部分数据中的变量的几个新变量,即所谓主成分,来代替原始变量进行建模。

data = pd.read_excel(‘Python数据分析与挖掘实战/chapter4/demo/data/principal_component.xls’,header=None)
data.head(3)

01234567
040.424.77.26.18.38.72.44220.0
125.012.711.211.012.920.23.5429.1
213.23.33.94.34.45.50.5783.6

data.shape

(14, 8)

from sklearn.decomposition import PCA

pca = PCA(n_components=3).fit(data)
data_pca = pca.transform(data)
data_pca,pca.explained_variance_ratio_.sum()

(array([[ 8.19133694, 16.90402785, 3.90991029],
[ 0.28527403, -6.48074989, -4.62870368],
[-23.70739074, -2.85245701, -0.4965231 ],
[-14.43202637, 2.29917325, -1.50272151],
[ 5.4304568 , 10.00704077, 9.52086923],
[ 24.15955898, -9.36428589, 0.72657857],
[ -3.66134607, -7.60198615, -2.36439873],
[ 13.96761214, 13.89123979, -6.44917778],
[ 40.88093588, -13.25685287, 4.16539368],
[ -1.74887665, -4.23112299, -0.58980995],

做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。

别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。

我先来介绍一下这些东西怎么用,文末抱走。


(1)Python所有方向的学习路线(新版)

这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

最近我才对这些路线做了一下新的更新,知识体系更全面了。

在这里插入图片描述

(2)Python学习视频

包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。

在这里插入图片描述

(3)100多个练手项目

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。

在这里插入图片描述

(4)200多本电子书

这些年我也收藏了很多电子书,大概200多本,有时候带实体书不方便的话,我就会去打开电子书看看,书籍可不一定比视频教程差,尤其是权威的技术书籍。

基本上主流的和经典的都有,这里我就不放图了,版权问题,个人看看是没有问题的。

(5)Python知识点汇总

知识点汇总有点像学习路线,但与学习路线不同的点就在于,知识点汇总更为细致,里面包含了对具体知识点的简单说明,而我们的学习路线则更为抽象和简单,只是为了方便大家只是某个领域你应该学习哪些技术栈。

在这里插入图片描述

(6)其他资料

还有其他的一些东西,比如说我自己出的Python入门图文类教程,没有电脑的时候用手机也可以学习知识,学会了理论之后再去敲代码实践验证,还有Python中文版的库资料、MySQL和HTML标签大全等等,这些都是可以送给粉丝们的东西。

在这里插入图片描述

这些都不是什么非常值钱的东西,但对于没有资源或者资源不是很好的学习者来说确实很不错,你要是用得到的话都可以直接抱走,关注过我的人都知道,这些都是可以拿到的。

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里无偿获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

  • 25
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值