Python语言学习-----Ubuntu16.04上基于YoloV4 的Keras物体识别目录
一、YoloV4-Keras包的下载
1、下载
2、yolov4.weights下载
3、VOC训练集、测试集下载
二、yolov4.weights的h5模型转换
1、修改包中convert.py代码内容
2、权重转换模型
三、基于YoloV4 的Keras物体识别
1、修改test.py代码
2、数据图片准备,百度一张小车图片,放进YoloV4-Keras包
3、终端运行测试
四、扩展一----5h模型训练
1、修改voc_annotation.py文件
2、修改train.py
3、进行模型训练
五、扩展二----YoloV3的物体识别
1、YoloV3下载编译
2、下载YoloV3权重文件
3、测试
随着深度学习的发展,目前已经出现了很多算法(或者训练技巧,tricks)来提升神经网络的准确率。在实际测试中评价一个算法的好坏优劣主要看两点,一是能否在大规模的数据集中起作用(work),二是是否有理论依据。一些算法仅能在某些特定的模型上或者某类特定的问题上运行,亦或是适用于一些小规模的数据集。然而,还有一些算法,例如batch normalization(BN)或者残差连接(residual-connections)已经被用在了不同的模型,任务以及不同的数据集中,已经被充分的证明了这些算法的普适性,是一个general的算法。我们假设这样的general(or universal)的算法包括Weighted-residual-