Yolo4学习

这篇博客详细介绍了如何在Ubuntu16.04上使用Python和Keras实现YoloV4物体识别。从下载YoloV4-Keras包、转换yolov4.weights的h5模型,到基于Keras进行物体识别的步骤,包括数据图片准备和运行测试,以及YoloV3的下载编译、权重文件获取和物体识别的测试过程,提供了全面的操作指南。
摘要由CSDN通过智能技术生成

Python语言学习-----Ubuntu16.04上基于YoloV4 的Keras物体识别目录

一、YoloV4-Keras包的下载
1、下载
2、yolov4.weights下载
3、VOC训练集、测试集下载
二、yolov4.weights的h5模型转换
1、修改包中convert.py代码内容
2、权重转换模型
三、基于YoloV4 的Keras物体识别
1、修改test.py代码
2、数据图片准备,百度一张小车图片,放进YoloV4-Keras包
3、终端运行测试
四、扩展一----5h模型训练
1、修改voc_annotation.py文件
2、修改train.py
3、进行模型训练
五、扩展二----YoloV3的物体识别
1、YoloV3下载编译
2、下载YoloV3权重文件
3、测试

随着深度学习的发展,目前已经出现了很多算法(或者训练技巧,tricks)来提升神经网络的准确率。在实际测试中评价一个算法的好坏优劣主要看两点,一是能否在大规模的数据集中起作用(work),二是是否有理论依据。一些算法仅能在某些特定的模型上或者某类特定的问题上运行,亦或是适用于一些小规模的数据集。然而,还有一些算法,例如batch normalization(BN)或者残差连接(residual-connections)已经被用在了不同的模型,任务以及不同的数据集中,已经被充分的证明了这些算法的普适性,是一个general的算法。我们假设这样的general(or universal)的算法包括Weighted-residual-

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值