3Blue1Brown线性代数的本质(1~5节)

本文介绍了线性代数中的基本概念,包括向量的三种理解方式,线性相关与线性无关的概念,以及线性变换的重点。线性变换是保持原点不动、直线不弯曲的等距变换,可以通过矩阵表示。矩阵乘法则描述了复合线性变换的过程,解释了为何矩阵乘法具有这样的运算规则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是向量

向量的三种理解方式:
物理意义上的向量:由一个方向和一个标量确定的箭头 矢量
在这里插入图片描述

统计意义上的向量:一个顺序不可打乱的数字列表
在这里插入图片描述

线性代数中的向量:上述两种的综合与相互转换 如二维向量对应一个有序二元数组
在这里插入图片描述
线性代数中向量一般是起点在原点,不是物理意义上的那种可以随处移动的(除了为了理解向量加法时的移动)

向量的加法与数乘是整个线性代数的基础

线性相关与线性无关

1:i帽j帽是xy坐标系中的“基向量”
2:之所以可以作为基向量,是因为i帽与j帽的线性无关,i帽和j帽都是一维向量,但是可以组合成二维向量来表示一个空间
3:线性相关,两个同维向量,若能张成更高维的空间,则为线性无关,反之为线性相关。几何意义上,二维向量的线性相关意

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值