因果推理(六):estimation

在这里插入图片描述
前面几讲都专注于上图中Identification的部分,这次介绍Estimation。

1. 条件结果模型(conditional outcome modeling, COM)

回顾一下第二讲中的调整公式,也是第四讲中后门调整的推论,以此来计算ATE τ \tau τ

τ ≜ E [ Y ( 1 ) − Y ( 0 ) ] = E W [ E [ Y ∣ T = 1 , W ] − E [ Y ∣ T = 0 , W ] ] \tau \triangleq \mathbb{E}[Y(1)-Y(0)]=\mathbb{E}_{W}[\mathbb{E}[Y \mid T=1, W]-\mathbb{E}[Y \mid T=0, W]] τE[Y(1)Y(0)]=EW[E[YT=1,W]E[YT=0,W]]

需要注意的是,上式中的W必须是充分调整集。通过这个公式,我们已经将因果量转换为统计量,也就是实现了identifation,下一步要做的就是estimation。

最简单的做法是用统计模型(机器学习模型)拟合条件期望 E [ Y ∣ T , W ] \mathbb{E}[Y \mid T, W] E[YT,W],然后用n个数据点的经验平均值( 1 n ∑ i \frac{1}{n} \sum_{i} n1i)去近似 E W \mathbb{E}_{W} EW

为了表达更清晰,引入 μ \mu μ代替平均期望:

μ ( 1 , w ) − μ ( 0 , w ) ≜ E [ Y ∣ T = 1 , W = w ] − E [ Y ∣ T = 0 , W = w ] \mu(1, w)-\mu(0, w) \triangleq \mathbb{E}[Y \mid T=1, W=w]-\mathbb{E}[Y \mid T=0, W=w] μ(1,w)μ(0,w)E[YT=1,W=w]E[YT=0,W=w]

然后,我们可以用统计模型拟合 μ \mu μ。 拟合模型中用 μ ^ \hat{\mu} μ^近似 μ \mu μ。我们将模型 μ ^ \hat{\mu} μ^作为条件结果模型。 现在,我们可以清楚地描述我们描述的模型辅助估计器(针对ATE):

τ ^ = 1 n ∑ i ( μ ^ ( 1 , w i ) − μ ^ ( 0 , w i ) ) \hat{\tau}=\frac{1}{n} \sum_{i}\left(\hat{\mu}\left(1, w_{i}\right)-\hat{\mu}\left(0, w_{i}\right)\right) τ^=n1i(μ^(1,wi)μ^(0,wi))
在这里插入图片描述
用COM估计条件平均干预效果时,充分调整集是 W ∪ X W \cup X WX而非 W W W,因此必须将X作为条件结果模型的一个输入。这时CATE为:

τ ( x ) ≜ E

  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值