一、CUDA
CUDA是NVIDIA推出的用于自家GPU的并行计算框架,也就是说CUDA只能在NVIDIA的GPU上运行,而且只有当要解决的计算问题是可以大量并行计算的时候才能发挥CUDA的作用。cuDNN(CUDA Deep Neural Network library):是NVIDIA打造的针对深度神经网络的加速库,是一个用于深层神经网络的GPU加速库。如果你要用GPU训练模型,cuDNN不是必须的,但是一般会采用这个加速库。
之前我们在利用GPU进行深度学习的时候,都要去NVIDIA的官网下载CUDA的安装程序和cudnn的压缩包,然后再进行很繁琐的系统环境配置。不仅环境配置麻烦,而且还特别容易配置错误,特别还有CUDA和cudnn版本的对应也特别容易搞错,但是利用anaconda安装配置pytorch环境的时候会自动帮我们配置好cuda和cudnn。
二、NVIDIA驱动安装与更新
去显卡驱动下载官网,下载与本机显卡型号匹配的驱动。
输入nvidia-smi,查看显卡支持的CUDA版本
三、Anaconda的安装
没有什么难度,直接官网下载,安装即可
四、Pytorch环境安装
打开anaconda的终端Anaconda Prompt。执行conda env list指令查看有哪些环境。这里先讲一下anaconda环境,首先base环境是一个大的环境,类似一个很大的一个房子(但是没有房间),当我们每创建一个环境就都会相当于在这个大房子里面用隔板创建一个房间,然后这个房间里面可以安装我们所需要的包,这样管理起来就比较方便。创建虚拟环境conda create -n 环境名字(英文)python=x.x。创建完虚拟环境就可以在该虚拟环境下安装各种各样的python包和一些深度学习框架。
打开pytorch的官网https://pytorch.org/,我们通过驱动检测到我的显卡为 MX250,最高支持cuda11.7版本,所以我们选择cuda11.3版本的cuda,然后将下面红色框框中的内容复制下来,不要把后面的-c pytorch -c conda-forge复制下来,因为这样运行就是还是在国外源下载,这样就会很慢。将复制的内容粘贴到pytorch环境下的终端,运行就可以了。这时候就开始下载环境所需要的依赖包了。
五、验证CUDA环境
打开pycharm,创建一个Project,这时候我们就要选择我们在anaconda里面安装的环境,在界面的右下角。按照如图中的选项选择我们在anaconda中创建的深度学习环境,可以看到有pytorch环境,我们进行选择,此时刚刚的右下角已经有了我们刚刚选择的pytorch环境中的python了。
创建一个python文件,运行如下代码,得到如图的输出就说明安装完毕。可以发现控制台打印出两个True,可以说明cuda和cudnn已经安装。并且可以得到cuda的版本为11.3和cudnn的版本为8.2.0版本。
import torch
print(torch.cuda.is_available())
print(torch.backends.cudnn.is_available())
print(torch.cuda_version)
print(torch.backends.cudnn.version())
至此我们的深度学习环境安装就已经完全完成。接下来可以在相对的环境下进行深度学习的实验了。
最后还要申明一下,可以创建不同的环境,在里面安装不同版本的cuda和cudnn版本。已经亲自尝试过了,是可以的。