粒子滤波实现刀具寿命预测

粒子滤波实现刀具寿命预测(附python代码)

(代码更新,增加重采样函数)

背景介绍

刀具失效是加工过程中的主要问题,通过多特征融合方法实现刀具磨损量预测后建立了刀具的健康指标。接下来就是利用得到的健康指标对刀具的剩余寿命进行预测。粒子滤波则是一种常用的方法。
关于粒子滤波的理论知识参见粒子滤波理论
本文主要讲解通过python简单实现基于粒子滤波的刀具寿命预测思路以及简要的代码。

粒子滤波的主要流程

1、建立刀具退化模型。结合刀具退化规律,一般情况下我们使用双指数模型。即:

  z k \ z_k  zk=   a e b k \ ae^{bk}  aebk+   c e d k \ ce^{dk}  cedk

那么[a、b、c、d]就是我们需要通过估计的模型参数。
2、 初始化参数与粒子集初始化   k = 0 \ k=0  k=0时根据先验生成M个   x 0 \ x_0  x0采样粒子,即:{ x 0 ( i ) x_0^{(i)} x0(i)}   i = 1 M \ _{i=1}^M  i=1M
3、 进行粒子滤波。对于   k = 1 , 2 , 3... t \ k=1,2,3...t  k=1,2,3...t
(1)重要性采样。生成采样粒子{ x k ( i ) x_k^{(i)} xk(i)}   i = 1 M \ _{i=1}^M  i=1M,计算粒子权值 w k w_k wk,并归一化;
(2)重采样。重采样后的粒子集为{ x k ( i ) , 1 / M x_k^{(i)},1/M xk(i),1/M};
(3)输出。计算 k k k时刻的状态估计值, x ^ = \widehat{x}= x = ∑ i = 1 M x k ( i ) w k ( i ) \sum_{i=1}^{M} x_k^{(i)}w_k^{(i)} i=1Mxk(i)wk(i)
4、 剩余寿命预测。将粒子集参数带入刀具退化模型完成寿命预测。
(1)将M个粒子带入退化模型得到刀具当前状态后的退化趋势;
(2)设定阈值,当磨损状态超过阈值后即判断刀具失效,通过剩余寿命方程   L t = i n f \ L_t=inf  Lt=inf⁡{   l t : Y ( t + l t ) ≥ D , t > 0 \ l_t:Y(t+l_t)≥D,t>0  lt:Y(t+lt)D,t>0}得到M个粒子的刀具剩余寿命。
(3)取M个粒子得到的剩余寿命的均值作为最终的刀具剩余寿命。

粒子滤波示意图

粒子滤波

居中并且带尺寸的图片: 退化模型

退化模型

相关代码

初始化


    ##initial value of model parameters

    a = 0.01475
   	b = 0.0556
    c = 0.255
    d = 0.0037
    X0 = np.array([[a], [b], [c], [d]])
    
    
    ##Parameters for Particle Filter
    M = 100   #粒子个数
    p = 4      #参数个数
    Xparam = np.zeros([p, N])
    Xparam[:,0] = X0[:,0]
    
    
    ##Process Noise and Measurement Noise
    var_a = 0.000001
    var_b = 0.01
    var_c = 0.1
    var_d = 0.0001
    sd_z = 1E-4
    Q = sd_z * np.diag([var_a, var_b, var_c, var_d])
    F = np.eye(p)
    R = 0.001
    
    
    ##Monte Carlo Simulation 粒子集初始化
    Xm = np.zeros([p, M, N])
    for i in range(0, M):
        dx1 = X0 + np.dot(sl.sqrtm(Q), np.random.randn(p, 1))
        Xm[:, i, 0] = dx1[:,0]
    

粒子滤波

# Particle Filter Initialization
	Zm = np.zeros([M, start])
	A_estimated = np.zeros([1, start])
	B_estimated = np.zeros([1, start])
	C_estimated = np.zeros([1, start])
	D_estimated = np.zeros([1, start])
	W = np.zeros([start, M])
	Zpf = np.zeros([M, start])
 #Particle Filtering
    for k in range(2, N+1):
        #state transition equations
        for i in range(0, M):
            Xm[0,i,k-1] = Xm[0,i,k-2] + np.sqrt(var_a*sd_z)*np.random.randn()
            Xm[1,i,k-1] = Xm[1,i,k-2] + np.sqrt(var_b*sd_z)*np.random.randn()
            Xm[2,i,k-1] = Xm[2,i,k-2] + np.sqrt(var_c*sd_z)*np.random.randn()
            Xm[3,i,k-1] = Xm[3,i,k-2] + np.sqrt(var_d*sd_z)*np.random.randn()
            
        #Weighing of particles
         for i in range(0, M):
                Zm[i, k - 1] = Xm[0, i, k - 1] * np.exp(Xm[1, i, k - 1] * k) \
                               + Xm[2, i, k - 1] * np.exp(Xm[3, i, k - 1] * k) + sd_z * np.random.randn()
                W[k - 1, i] = (1 / np.sqrt(2 * np.pi * R)) \
                              * np.exp(-(Z_measured1[k - 1] - Zm[i, k - 1]) ** 2 / (2 * R))
    
        #Resampling based on weights
      	 W[k - 1, :] = W[k - 1, :] / np.sum(W[k - 1, :])  # 权值归一化
            dx3 = []
            for i in range(1, M + 1):
                dx3.append(i)
            dx3 = np.array(dx3)
            outIndex = sim_resample(dx3, np.array([W[k - 1, :]]).T)  # 随机重采样
            Xm[:, :, k - 1] = Xm[:, outIndex[:], k - 1]  # 得到新的样本集
            W[k - 1, :] = 1/M          #得到新的样本集
 		#value of particles
       # Mean value of particles
            A_estimated[0, k - 1], _ = estimate(Xm[0, :, k - 1], W[k-1, :])
            B_estimated[0, k - 1], _ = estimate(Xm[1, :, k - 1], W[k-1, :])
            C_estimated[0, k - 1], _ = estimate(Xm[2, :, k - 1], W[k-1, :])
            D_estimated[0, k - 1], _ = estimate(Xm[1, :, k - 1], W[k-1, :])
            X_param[:, k - 1] = [np.median(A_estimated[:, k - 1]), np.median(B_estimated[:, k - 1]),
                                 np.median(C_estimated[:, k - 1]), np.median(D_estimated[:, k - 1])]  # 滤波后的参数
        Zpf = np.zeros([1, noOfCycles])
        Xpf = np.zeros([1, noOfCycles])
        for k in range(int(start), noOfCycles):
            Zpf[0, k - start] = X_param[0, -1] * np.exp(X_param[1, -1] * k) \
                                + X_param[2, -1] * np.exp(X_param[3, -1] * k) + sd_z * np.random.randn()
            Xpf[0, k - start] = k
# 剩余寿命预测
   			if Zpf[0, k - start] >= threshold_capacity:
      			failure_index = k
      			break
      			noOfCyclesLeft = failure_index - start                     

重采样函数与状态估计函数

# 重采样函数
def sim_resample(m, weights):
    N = len(m)
    cumulative_sum = np.cumsum(weights)
    cumulative_sum[-1] = 1.
    rn = np.random.rand(N)
    indexes = np.searchsorted(cumulative_sum, rn)
    return indexes

# estimation
def estimate(particles, weights):
    mean = np.average(particles, weights=weights)
    var = np.average((particles - mean) ** 2, weights=weights)
    return mean, var

  • 7
    点赞
  • 62
    收藏
    觉得还不错? 一键收藏
  • 15
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值