首先需要明确,Kappa系数既可用于统计中的一致性检验,也可以用于机器学习中来衡量分类精度。它们的本质是一样的,但是理解方式略有不同,本文将从机器学习的角度来阐述Kappa系数。
一、基本思想
一般来说,对于机器学习中的分类问题,最简单粗暴的衡量指标就是准确率(accuracy),但是对于样本标签分布极其不均衡的数据,准确率就会出现误导了。
比如对于如下数据集,100个样本中10个是猫,10个是狗,需要预测每个样本是猫还是狗。当我们直接预测所有样本都是狗时,我们的预测率就可以达到90%。
这个准确率会造成分类结果很好的误导,那么我们是否可以考虑构造一个新的指标,把这个90%的准确率作为baseline(定义其为0),而全部分类正确时定义为1,得到如下图中My_score的指标。
这个指标基本接近Kappa系数了,只是Kappa系数的baseline计算方式不同。
二、Kappa系数定义
1.一致性检验中对kappa系数的定义
这里借鉴一下一致性检验中对kappa的定义来理解,假设下图中的R1是预测的样本分布,R2是真实样本分布。OA是R1的预测准确率,