《高等运筹学》复习题手写解答 Advanced Operations Research: Final Exam:Review Exercises

Nonlinear Program 非线性规划

Problem 29.
Suppose p < 1 , p ≠ 0 p<1,p\neq 0 p<1,p=0 . Show that the function of
f ( x ) = ( ∑ i = 1 n x i p ) 1 / p f(x) ={( \sum_{i=1}^nx_i^p)}^{1/p} f(x)=(i=1nxip)1/p with d o m f = R + + n domf = R^n_{++} domf=R++n is concave.

Solution
在这里插入图片描述
Problem 18.
Let Ω Ω be a subset of E n E^n En and let f ∈ C 2 f \in C^2 fC2 be a function on Ω Ω . If x ∗ x^∗ x is a relative minimum point of f f f over Ω Ω , then for any d ∈ E n d\in E^n dEn that is a feasible direction at x ∗ x^∗ x we have

  1. ▽ f ( x ∗ ) d ≥ 0 \triangledown f(x^*)d\geq 0 f(x)d0
  2. if ▽ f ( x ∗ ) d = 0 \triangledown f(x^*)d=0 f(x)d=0, then d T ▽ 2 f ( x ∗ ) d ≥ 0 d^T\triangledown^2 f(x^*)d\geq 0 dT2f(x)d0

Solution在这里插入图片描述
Problem 4.
Find the minimum number of c c c, such that any local optimal solution is a global optimal solution for the following nonlinear program of P 4 P4 P4.
P 4 ) max ⁡   f ( x ) = − c ∗ x 1 2 + x 1 x 2 + 2 x 1 − 1 2 x 2 2 s . t .    x 1 ≤ 2 P4) \max \ f(x) = −c∗x^2_1 + x_1x_2 + 2x_1 − \frac{1}{2}x_2^2 \\ s.t. \ \ x_1 ≤ 2 P4)max f(x)=cx12+x1x2+2x121x22s.t.  x12
Solution
在这里插入图片描述

KKT condition KKT条件

Problem 3.
Show the KKT condition for the nonlinear program of P 3 P3 P3, and try to solve it with the KKT conditions.
P 3 )   max ⁡   − 2 x 1 2 − 2 x 1 x 2 − x 2 2 + 10 x 1 + 10 x 2 s . t .     x 1 2 + x 2 2 ≤ 5         3 x 1 + x 2 ≤ 6 P3) \ \max{ \ −2x^2_1 −2x_1x_2 −x^2_2 + 10x_1 + 10x_2} \\ s.t. \ \ \ x^2_1 + x^2_2 ≤ 5 \\ \ \ \ \ \ \ \ 3x_1 + x_2 ≤ 6 P3) max 2x122x1x2x22+10x1+10x2s.t.   x12+x225       3x1+x26
Solution
在这里插入图片描述

Golden section method 黄金分割法

Problem 16.
For the problem min ⁡ f ( x ) \min{f(x)} minf(x) over x ∈ [ a , b ] x\in [a,b] x[a,b], we use golden section method to solve it. Please prove the convergence ratio is 0.618 0.618 0.618.

Solution
在这里插入图片描述

Newton’s method 牛顿法

Problem 17.
For one dimension nonlinear problem min ⁡ f ( x ) \min f(x) minf(x) over x ∈ [ a , b ] x\in [a,b] x[a,b], we use Newton’s Method to solve it. Please prove the convergence ratio of Newton’s method is at least two.

Solution在这里插入图片描述在这里插入图片描述

Gradient steepest descent/ ascent method 梯度下降/上升法

*Problem 4.
max ⁡   f ( x ) = − 1 2 x 1 2 + x 1 x 2 + 2 x 1 − 1 2 x 2 2 \max \ f(x) = −\frac{1}{2}x^2_1 + x_1x_2 + 2x_1 − \frac{1}{2}x_2^2 \\ max f(x)=21x12+x1x2+2x121x22 Use the gradient steepest ascent method to find the optimal solution of above nonlinear program, with the start point x 0 = ( 0 , 4 ) T x_0 = (0,4)^T x0=(0,4)T.

Solution
在这里插入图片描述

Integer Programming 整数规划

Branch and bound 分支定界法

Problem 1.
Use branch and bound method to solve P 1 ) P1) P1).
Note that at each branching node, you can use graphic method to get the (local) upper bound for each node.
Draw the branch and bound tree, and point out the Node Program, GLB and LUB clearly.
P 1 ) max ⁡     13 x 1 + 5 x 2 s . t .    3 x 1 + 2 x 2 ≤ 6.5 − 2 x 1 + 3 x 2 ≤ 8 x 1 , x 2 ≥ 0 , i n t e g e r s P1) \max{\ \ \ 13x_1+5x_2}\\ s.t. \ \ 3x_1+2x_2\leq 6.5\\ -2x_1+3x_2\leq 8\\ x_1,x_2\geq0,integers P1)max   13x1+5x2s.t.  3x1+2x26.52x1+3x28x1,x20,integers
Solution
在这里插入图片描述
branch and bound tree
在这里插入图片描述

Gomory cutting plane algorithm 割平面法/ Column generation 列生成算法

Problem 26.
min ⁡ c T x s . t . Ax = b x ∈ i n t e g e r \min \textbf{\textit{c}}^T\textbf{\textit{x}}\\ s.t. \textbf{\textit{Ax}}=\textbf{\textit{b}}\\ \textbf{\textit{x}}\in integer mincTxs.t.Ax=bxintegerFor above I P IP IP, suppose now we have a basic feasible solution corresponding to basis matrix B \textbf{\textit{B}} B and Non-basis N \textbf{\textit{N}} N, i.e., A = ( B , N ) \textbf{\textit{A}} = (\textbf{\textit{B}},\textbf{\textit{N}}) A=(B,N), and let a i j = ( B − 1 A j ) i a_{ij} = (\textbf{\textit{B}}^{−1}\textbf{\textit{A}}_j)_i aij=(B1Aj)iand a i 0 = ( B − 1 b ) i a_{i0} = (\textbf{\textit{B}}^{−1}\textbf{\textit{b}})_i ai0=(B1b)i. Prove:
x i + ∑ j ∈ N ⌊ a i j ⌋ x j ≤ ⌊ a i 0 ⌋ x_i+\sum_{j\in \textbf{\textit{N}}}\left \lfloor a_{ij} \right \rfloor x_{j}\leq \left \lfloor a_{i0} \right \rfloor xi+jNaijxjai0
Solution
在这里插入图片描述
Problem 12.
Use the Gomory cutting plane algorithm to solve the following integer linear programming.
min ⁡    x 1 − 2 x 2                 s . t .    − 4 x 1 + 6 x 2 ≤ 9 x 1 + x 2 ≤ 4               x 1 , x 2 ≥ 0 , i n t e g e r s \min \ \ x_1 −2x_2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ s.t. \ \ −4x_1 + 6x_2 ≤ 9 \\ x_1 + x_2 ≤ 4 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ x_1,x_2 ≥ 0, integers min  x12x2               s.t.  4x1+6x29x1+x24             x1,x20,integers
Solution
在这里插入图片描述
Problem 28.
I P ) min ⁡ c T x s . t .    A x = b x ≥ 0   a n d ∈ i n t e g e r s IP)\min{c^Tx} \\ s.t.\ \ Ax = b \\ x ≥ 0 \ and \in integers IP)mincTxs.t.  Ax=bx0 andintegersFor above I P IP IP, denote A = [ a 1 , a 2 , ⋅ ⋅ ⋅ , a n ] A = [a_1,a_2,··· ,a_n] A=[a1,a2,,an] by columns. Let k < n k<n k<n, denote A k = [ a 1 , a 2 , ⋅ ⋅ ⋅ , a k ] A_k = [a_1,a_2,··· ,a_k] Ak=[a1,a2,,ak].
I P R ) min ⁡ c T x s . t .    A x = b        x ≥ 0 IPR)\min{c^Tx} \\ s.t.\ \ Ax = b \\ \ \ \ \ \ \ x ≥ 0 IPR)mincTxs.t.  Ax=b      x0 I P R k ) min ⁡ c T x s . t .    A k x = b        x ≥ 0 IPR_k)\min{c^Tx} \\ s.t.\ \ A_kx = b \\ \ \ \ \ \ \ x ≥ 0 IPRk)mincTxs.t.  Akx=b      x0Suppose x k ∗ x_k^* xk, and x ∗ x^∗ x is the optimal solution for subproblem I P R k ) IPR_k) IPRk) and I P R ) IPR) IPR) respectively, and objectives of O B J I P R k OBJ_{IPR_k} OBJIPRk, O B J I P R OBJ_{IPR} OBJIPR correspondingly. Let S = { a 1 , a 2 , ⋅ ⋅ ⋅ , a n } S = \{a_1,a_2,··· ,a_n\} S={a1,a2,,an}, B B B is the basis related to x k ∗ x^∗_k xk for I P R k IPR_k IPRk.
P P ) min ⁡ c a − c B B − 1 a s . t .    a ∈ S PP)\min c_a −c_BB^{−1}a\\ s.t.\ \ a \in S PP)mincacBB1as.t.  aSPlease prove: If O B J P P ≥ 0 OBJ_{PP} ≥ 0 OBJPP0, then O B J I P R k = O B J I P R OBJ_{IPR_k} = OBJ_{IPR} OBJIPRk=OBJIPR

Solution
在这里插入图片描述

Dynamic programming 动态规划

IP 有整数约束

Problem 8.
Use dynamic programming method to solve the following integer programming.
max ⁡    2 x 1 + 3 x 2 + x 3 + 2 x 4              s . t .     5 x 1 + 7 x 2 + 6 x 3 + 5 x 4 ≤ 14                   x 1 , x 2 , x 3 , x 4 ≥ 0 , i n t e g e r s \max {\ \ 2x_1 + 3x_2 + x_3 + 2x_4}\\ \ \ \ \ \ \ \ \ \ \ \ \ s.t. \ \ \ 5x_1 + 7x_2 + 6x_3 + 5x_4 ≤ 14\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x_1,x_2,x_3,x_4 ≥ 0, integers max  2x1+3x2+x3+2x4            s.t.   5x1+7x2+6x3+5x414                 x1,x2,x3,x40,integersNote that you need to point out recursive formula clearly, and write down calculation steps clearly.

Solution
在这里插入图片描述

LP 无整数约束

*Problem 8.
Use dynamic programming method to solve the following linear programming.
max ⁡    2 x 1 + 3 x 2 + x 3 + 2 x 4              s . t .     5 x 1 + 7 x 2 + 6 x 3 + 5 x 4 ≤ 14      x 1 , x 2 , x 3 , x 4 ≥ 0 , \max {\ \ 2x_1 + 3x_2 + x_3 + 2x_4}\\ \ \ \ \ \ \ \ \ \ \ \ \ s.t. \ \ \ 5x_1 + 7x_2 + 6x_3 + 5x_4 ≤ 14\\ \ \ \ \ x_1,x_2,x_3,x_4 ≥ 0, max  2x1+3x2+x3+2x4            s.t.   5x1+7x2+6x3+5x414    x1,x2,x3,x40,Note that you need to point out recursive formula clearly, and write down calculation steps clearly.

Solution
在这里插入图片描述

Linear programming 线性规划

Central path 中心路径法(内点法)

Problem 25.
Let ( x ( μ ) , y ( μ ) , s ( μ ) ) (x(\mu),y(\mu),s(\mu)) (x(μ),y(μ),s(μ)) be the central path of
x ◦ s = μ e A x = b A T y + s = c x ≥ 0 , s ≥ 0 x◦s = \mu e\\ Ax = b\\ A^Ty + s = c\\ x ≥ 0,s ≥ 0 xs=μeAx=bATy+s=cx0,s0 Then prove:
(a) The central path point ( x ( μ ) , y ( μ ) , s ( μ ) ) (x(\mu),y(\mu),s(\mu)) (x(μ),y(μ),s(μ)) is bounded for 0 < μ ≤ μ 0 0 < \mu ≤ \mu_0 0<μμ0 and any given 0 < μ < ∞ 0 < \mu < ∞ 0<μ<.
(b) For 0 < μ ′ < μ 0 < {\mu}'< \mu 0<μ<μ,
c T x ( μ ′ ) ≤ c T x ( μ )    a n d    b T y ( μ ′ ) ≥ b T y ( µ ) c^Tx( {\mu}') ≤ c^Tx(\mu)\ \ and\ \ b^Ty( {\mu}') ≥ b^Ty(µ) cTx(μ)cTx(μ)  and  bTy(μ)bTy(µ)Furthermore, if x ( μ ′ ) ≠ x ( μ ) x( {\mu}')\neq x(\mu) x(μ)=x(μ) and y ( μ ′ ) ≠ y ( μ ) y( {\mu}')\neq y(\mu) y(μ)=y(μ).
c T x ( μ ′ ) < c T x ( μ )    a n d    b T y ( μ ′ ) > b T y ( µ ) c^Tx( {\mu}') < c^Tx(\mu)\ \ and\ \ b^Ty( {\mu}') > b^Ty(µ) cTx(μ)<cTx(μ)  and  bTy(μ)>bTy(µ)
Solution
在这里插入图片描述在这里插入图片描述
Problem 11.
Compute the central path for the following linear programming.
min ⁡   x 1                           s . t .    x 1 + x 2 + x 3 = 2 \min{\ x_1} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ s.t. \ \ x_1 + x_2 + x_3 = 2 min x1                         s.t.  x1+x2+x3=2
Solution
在这里插入图片描述

Karmarkar算法(内点法)

Problem 6.
What are the differences between Karmarkar method and Simplex method for linear programming? Please show the logics of them clearly. Possibly you can use figures to show what your idea.

Solution在这里插入图片描述

Eliposoid method 椭球法(外点法)

Problem 7.
Use ellipsoid method solve:
max ⁡    0 s . t .    x 1 + 5 x 2 ≤ 7          x 1 + 2 x 2 ≥ 6      x 1 , x 2 ≥ 0. \max \ \ 0 \\ s.t. \ \ x_1 + 5x_2 ≤ 7 \\ \ \ \ \ \ \ \ \ x_1 + 2x_2 ≥ 6 \\ \ \ \ \ x_1,x_2 ≥ 0 . max  0s.t.  x1+5x27        x1+2x26    x1,x20.The initial Ellipsoid is taken to be E ( 0 , 100 × I 2 × 2 ) E(0,100×I_{2×2}) E(0,100×I2×2).
You only need to give THREE STEPS

Solution
在这里插入图片描述

Transportation problem & unimodular matrix 运输问题与幺模矩阵

Problem 20.
For transportation problem stated as follows.
There are m origins that contain various amounts of a commodity that must be shipped to n n n destinations to meet demand requirements. Specially, origin i i i contains an amount a i a_i ai, and destination j j j has a requirement of amount b i b_i bi. It is assumed that the system is balanced in the sense that total supply equals total demand. There is unit cost c i j c_{ij} cij associated with the shipping of the commodity from origin i i i to destination j j j. The problem is to find the shipping pattern between origins and destinations that satisfies all the requirements and minimized the total shipping cost.
(1) build an mixed integer linear programming model for above problem.
(2) If the row and column sums of a transportation problem are integers, then the basic variables in any basic solution are integers. 如果运输问题的行和列的和是整数,证明所有基可行解的基变量为整数。

Problem 21.
A matrix A \textbf{\textit{A}} A is said to be totally unimodular if the determinant of every square submatrix formed from it has value 0 , + 1 0,+1 0,+1 or − 1 −1 1. (完全幺模矩阵的各阶子式均为0,1或-1)
(1) Show that the matrix A \textbf{\textit{A}} A defining the equality constraints of a transportation prolblem is totally unimodular. 证明运输问题的系数矩阵是完全幺模的。
(2) In the system of equations Ax = b \textbf{\textit{Ax}}=\textbf{\textit{b}} Ax=b, assume that A \textbf{\textit{A}} A is totally unimodular and that all elements of A \textbf{\textit{A}} A and b \textbf{\textit{b}} b are integers. Show that all basic solutions have integer components.
与Problem20(2)的区别在于:此时 A \textbf{\textit{A}} A是任意矩阵,秩不再是 m + n − 1 m+n-1 m+n1

Solution
在这里插入图片描述
在这里插入图片描述

Graph Theory 图论

Maximum flow 最大流

Problem 9.
Use the Ford-Fulkerson method to solve decide the maximum flow for the following network problem.

Solution
在这里插入图片描述
在这里插入图片描述

附原题

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 2
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值