DuoRC: Towards Complex Language Understanding with Paraphrased Reading Comprehension

DuoRC分析

数量:186089对Q-A对

Source来自7680个电影情节,每对来自两个版本,一个版本来自WiKi,另外一个来自IMD。

特征:问题和答案是从描述相同故事的文档的不同版本创建的,通过设计确保,从一个版本创建的问题与包含另一个版本答案的段之间在词汇上几乎没有重叠。

另外,这两个版本在叙事风格和词汇上均不同。

第二个版本的问题需要更深的理解和相关的背景知识。

需要多句子之间的复杂推理。

难点:

1.“多重RC”是专门为包含大量疑问句而设计的,这些疑问句与对应的段落之间的词汇重叠程度很低。

2. 它要求使用背景和常识知识来得出答案,并超越文章本身的内容。

3. 它包含来自电影情节的叙述段落,需要跨多个句子进行复杂的推理来推断答案。

4. DuoRC中的几个问题,虽然看起来是相关的,但是实际上不能从给定的段落中得到回答,因此要求机器检测问题的不可回答性。

模型应该具备一下能力:

1. 使用知识图

2. 常识知识

3. 段落/语义理解

4. 跨文章中事件的多句推理,包括命名实体和名词的同指消解

5. 当问题不能直接回答但在文章中有微妙提示时有根据的猜测(如Q1)

6.识别不能回答的问题。标注为“unknown”

 

具体例子来看,得出答案的分析方式不同。

计算了两个版本之间的字面jaccard距离,即两个样地中词袋的交合比,发现为26%。

(杰卡德距离(Jaccard Distance) 是用来衡量两个集合差异性的一种指标。)

 

Collecting QA pairs from shorter version of the plot (SelfRC):

(1)答案最好是一个单词或一个简短的短语,

(2)不允许提出主观问题(如征求意见)

(3)问题应该只从文章中回答,不要求任何外部知识

(4)问题和答案应该结构良好,语法正确

70%的工人直接从文档中选择答案,30%的工人合成答案。因此,我们收集了85773个这样的QA对及其相应的文档。我们称之为SelfRC数据集,因为答案来自询问问题的同一文档。

Collecting answers from longer version of the plot (ParaphraseRC):

(1)选择与较长版本中的跨度匹配的答案

(2)从头合成答案

(3)标记由于给定段落中缺乏信息而无法回答的问题

在50%的案例中,workers 选择了与文档中的跨度相匹配的答案,而在37%的案例中,他们综合了答案,而在13%的案例中,他们认为那个问题没有答案。

总的来说,SelfRCParaphraseRC中62%的问题的答案有部分重叠,这表明质量是合理的。剩下的38%没有重叠的地方可以归因于来自更大情节的问题的不可回答性、信息差距或者两个情节之间信息的释义。

具体而言,只有40.7%的问题在两个文件中有相同的答案。对于大约37.8%的问题,两个答案中的单词没有重叠。对于剩下的21%的问题,这两个答案之间存在部分重叠。

Model

具体而言,对于数据集的SelfRC版本,大约30%的答案是合成的,并且与文档中的跨度不匹配,而对于ParaphraseRC任务,这个数字是50%。尽管如此,我们仍然可以利用SQuAD数据集的进展,并根据我们的任务调整这些跨度预测模型。为此,我们建议使用两个模型。

寻求采用一个好的跨度预测模型,对于该模型,(i)性能在SQuAD排行榜(Rajpurkar等人,2016b)上的最佳性能模型的3-5%之内,(i i)基于本文作者发布的代码可以再现结果。双向注意流(BiDAF)模型(Seo等人,2016)满足这些标准,因此我们使用这个模型。

我们采用的第二种模型是一个两阶段的过程,首先预测跨度,然后综合跨度的答案。第一步还是使用Bi—DAF,第二阶段,具体而言,在基于查询的抽象摘要中,训练数据是表单{查询、文档、生成的摘要},在我们的例子中,训练数据是表单{查询、迷你文档、生成的答案}。

Additional NLP pre-processing:

为了解决某些在问题中出现的词不一定出现在原文本中或者是近义词的关系,对整篇文章使用Stanford coreference resolution。如果:(a)两个单词具有相同的表面形式,或者(b)一个单词是单词(例如,河流和河流)的变形形式,或者(c)Glove(Pennington等人,2014)和Skip-thought.(Kiros等人,2015)的嵌入非常接近,则认为两个单词向量非常接近(如果一个出现w,则认为两个单词向量非常接近)。(d)这两个单词出现在Wordnet的同义词组中。

如果至少50%的查询词(忽略停止词)与句子中的词匹配,我们认为句子与问题相关。如果文档中没有一个句子与问题有至少50%的重叠,那么我们选择与问题至少30%的重叠的句子。这个阈值的选择是基于手动观察一个小样本集。这个观察结果给了我们一个概念,即一个合适的阈值应该是什么,这个阈值可以具有合理的精确度,并且可以回忆相关片段提取步骤。由于此步骤是基于规则的,因此我们只能使用这样的定性检查来设置此参数。此外,由于这个步骤的目标是高召回,如果没有找到匹配,我们将阈值放宽到30%。

实验:

理想情况下,SpanModel应该只在测试集中的那些答案与文档中的跨度匹配的实例上进行评估。我们将测试集的这个子集称为基于Span的测试集。虽然并不理想,但我们也在整个测试集上评估SpanModel模型。这是不理想的,因为在测试集中有许多不与文档中的跨度相对应的答案,而模型仅被训练来预测跨度。我们称之为完整测试集。我们还在两个测试集上评估GenModel。

### 回答1: Faster R-CNN是一种基于区域建议网络(Region Proposal Networks,RPN)的物体检测算法,旨在实现实时物体检测。它通过预测每个区域是否含有物体来生成候选框,并使用卷积神经网络(CNN)来确定候选框中的物体类别。Faster R-CNN在提高检测精度的同时,也显著提高了检测速度。 ### 回答2: 在计算机视觉领域中,目标检测一直是热门研究的方向之一。近年来,基于深度学习的目标检测方法已经取得了显著的进展,并且在许多实际应用中得到了广泛的应用。其中,Faster R-CNN 是一种基于区域建议网络(Region Proposal Networks,RPN)的目标检测方法,在检测准确率和速度之间取得了很好的平衡,能够实现实时目标检测。 Faster R-CNN 的基本框架由两个模块组成:区域建议网络(RPN)和检测模块。RPN 主要负责生成候选目标框,而检测模块则利用这些候选框完成目标检测任务。具体来说,RPN 首先在原始图像上以多个尺度的滑动窗口为基础,使用卷积网络获取特征图。然后,在特征图上应用一个小型网络来预测每个位置是否存在目标,以及每个位置的目标边界框的坐标偏移量。最终,RPN 根据预测得分和位置偏移量来选择一部分具有潜在对象的区域,然后将这些区域作为候选框送入检测模块。 检测模块的主要任务是使用候选框来检测图像中的目标类别和位置。具体来说,该模块首先通过将每个候选框映射回原始图像并使用 RoI Pooling 算法来获取固定大小的特征向量。然后,使用全连接神经网络对这些特征向量进行分类和回归,以获得每个框的目标类别和精确位置。 相比于传统的目标检测方法,Faster R-CNN 具有以下优点:首先,通过使用 RPN 可以自动生成候选框,避免了手动设计和选择的过程;其次,通过共享卷积网络可以大大减少计算量,提高效率;最后,Faster R-CNN 在准确率和速度之间取得了很好的平衡,可以实现实时目标检测。 总之,Faster R-CNN 是一种高效、准确的目标检测方法,是深度学习在计算机视觉领域中的重要应用之一。在未来,随着计算机视觉技术的进一步发展,Faster R-CNN 这类基于深度学习的目标检测方法将会得到更广泛的应用。 ### 回答3: Faster R-CNN是一种结合了深度学习和传统目标检测算法的新型目标检测方法,旨在提高目标检测速度和准确率。Faster R-CNN采用了Region Proposal Network(RPN)来生成候选区域,并通过R-CNN网络对候选区域进行分类和定位。 RPN是一种全卷积神经网络,用于在图像中生成潜在的候选区域。RPN通常在卷积特征图上滑动,对每个位置预测k个候选区域和其对应的置信度得分。这样,对于输入图像,在不同大小和宽高比的Anchor上预测候选框,可以在计算上更有效率。 R-CNN网络利用卷积特征图作为输入,对RPN生成的候选区域进行分类和精确定位。与以前的目标检测方法相比,Faster R-CNN使用了共享卷积特征,使得整个检测网络可以端到端地进行训练和优化,缩短了训练时间,同时也更便于理解和改进。 Faster R-CNN不仅具有较高的准确性,还具有较快的检测速度。在各种基准测试中,Faster R-CNN与其他目标检测算法相比,都取得了优异的性能表现。总之,Faster R-CNN将目标检测引入了一个新的阶段,为实时目标检测提供了一个良好的基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值