线性回归超详细入门详解+实例演示

本文详述了线性回归的基本概念,包括线性回归的目的、问题描述、代价函数和正则化等,通过波士顿房价实例展示线性回归的应用。利用梯度下降和正规方程求解最优参数,旨在帮助读者深入理解并掌握线性回归。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.入门详解


1.1线性回归的目的

        想象这样一种情况,现在你有一套房子需要出售,但你并不知道房子以多少价格出售合适,你只知道你的房子有多少个平方(假设是100个平方),且一般情况下房子平方数越大,房子出售价格越高。

        于是你询问了附近很多出售过房子的人,得到了每个出售者出售房子的价格和平方数,想通过这些数据来预测你的房子能卖多少钱。

        在这个例子中:

        线性:房子平方数越大,房子出售价格越高(成较为明显的线性关系)

        训练集:其他出售者出售房子的价格和平方数

        目的:通过训练集提供的数据找到房子平方数和出售价格的线性关系,并通过这个关系预测自己100平方的房子出售价格


1.2问题描述

        假设在理想情况下你得到了以下数据:

平方数/m^{2} 价格
     50       50万
     60       60万
110 110万
120 120万

        那我们能很快地得出线性关系:

 h(x)=x

        其中x为房子平方数,h(x)为价格

        并预测我们100平方的房子能出售100万元:

h(x)=x

当x=100  h(x)=100

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值