第二十四篇,数据分析之数据可视化之绘制三维图像

之前讲的都是二维的坐标系,可视化中还能在三维坐标系中绘制三维图像。

这个时候就需要用到我们Matplotlib中的一个工具,mplot3d用来专门绘制三维图像的工具,在我们安装Matplotlib的时候就已经安装好了mplot3d。

from mpl_toolkits import mplot3d

首先导入子模块,然后再完成案例;

fig = plt.figure()
ax = plt.axes(projection='3d')
plt.show()

在这里插入图片描述
结果就是这样的一个三维坐标系,在三维坐标系里面,点的坐标是通过x,y,z来确定的,如果要在三维坐标系中画出曲线图或者散点图,可以使用ax.plot3D和ax.scatter3D函数。

fig = plt.figure()
ax = plt.axes(projection='3d')
x_line = np.linspace(0,15,100)
y_line = np.sin(x_line)
z_line = np.cos(x_line)
ax.plot3D(x_line,y_line,z_line,'y')

x_point = 15 * np.random.random(100)
y_point = np.sin(x_point)
z_point = np.cos(x_point)
ax.scatter3D(x_point,y_point,z_point,c=x_point,cmap='Blues')

在这里插入图片描述
观察运行结果还是很好理解的就是多了一个z轴的参数,ax.scatter3D方法里面的c表示的是指定每个点的颜色,cmap表示的也是颜色,具体代码详情可以参考绘制图像也可以查看帮助文档:


                
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值