之前讲的都是二维的坐标系,可视化中还能在三维坐标系中绘制三维图像。
这个时候就需要用到我们Matplotlib中的一个工具,mplot3d用来专门绘制三维图像的工具,在我们安装Matplotlib的时候就已经安装好了mplot3d。
from mpl_toolkits import mplot3d
首先导入子模块,然后再完成案例;
fig = plt.figure()
ax = plt.axes(projection='3d')
plt.show()

结果就是这样的一个三维坐标系,在三维坐标系里面,点的坐标是通过x,y,z来确定的,如果要在三维坐标系中画出曲线图或者散点图,可以使用ax.plot3D和ax.scatter3D函数。
fig = plt.figure()
ax = plt.axes(projection='3d')
x_line = np.linspace(0,15,100)
y_line = np.sin(x_line)
z_line = np.cos(x_line)
ax.plot3D(x_line,y_line,z_line,'y')
x_point = 15 * np.random.random(100)
y_point = np.sin(x_point)
z_point = np.cos(x_point)
ax.scatter3D(x_point,y_point,z_point,c=x_point,cmap='Blues')

观察运行结果还是很好理解的就是多了一个z轴的参数,ax.scatter3D方法里面的c表示的是指定每个点的颜色,cmap表示的也是颜色,具体代码详情可以参考绘制图像也可以查看帮助文档:

最低0.47元/天 解锁文章
3万+

被折叠的 条评论
为什么被折叠?



