hadoop-3.3.0 集群搭建

安装 hadoop-3.3.0

1.1. 路径

服务器基础环境准备
安装包目录结构
配置文件的修改
- 第一类 1个  hadoop-env.sh
- 第二类  4个  core|hdfs|mapred|yarn-site.xml
  - site表示的是用户定义的配置,会覆盖default中的默认配置。
  - core-site.xml  核心模块配置
  - hdfs-site.xml   hdfs文件系统模块配置
  - mapred-site.xml  MapReduce模块配置
  - yarn-site.xml  yarn模块配置
- 第三类 1个  workers  
scp安装包到其他机器
Hadoop环境变量配置
hadoop namenode format
Hadoop集群启动
Hadoop初体验

1.2. 实现

1.2.1. 服务器基础环境准备

ip、主机名
hosts映射 别忘了windows也配置
防火墙关闭
时间同步
免密登录  node1---->node1 node2 node3
JDK安装

1.2.2. 安装包目录结构

#上传安装包到 /export/software 解压
[root@node1 ~]# cd /export/software/
[root@node1 software]# tar -zxvf hadoop-3.3.0-Centos7-64-with-snappy.tar.gz -C /export/server/

 bin    #hadoop核心脚本 最基础最底层脚本
 etc    #配置目录
 include
 lib
 libexec
 LICENSE.txt
 NOTICE.txt
 README.txt
 sbin  #服务启动 关闭 维护相关的脚本
 share #官方自带实例  hadoop相关依赖jar

1.2.3. 配置文件的修改

cd /export/server/hadoop-3.3.0/etc/hadoop

hadoop-env.sh

export JAVA_HOME=/export/server/jdk1.8.0_241

#文件最后添加
export HDFS_NAMENODE_USER=root
export HDFS_DATANODE_USER=root
export HDFS_SECONDARYNAMENODE_USER=root
export YARN_RESOURCEMANAGER_USER=root
export YARN_NODEMANAGER_USER=root

core-site.xml

<!-- 设置默认使用的文件系统 Hadoop支持file、HDFS、GFS、ali|Amazon云等文件系统 -->
<property>
    <name>fs.defaultFS</name>
    <value>hdfs://node1:8020</value>
</property>

<!-- 设置Hadoop本地保存数据路径 -->
<property>
    <name>hadoop.tmp.dir</name>
    <value>/export/data/hadoop-3.3.0</value>
</property>

<!-- 设置HDFS web UI用户身份 -->
<property>
    <name>hadoop.http.staticuser.user</name>
    <value>root</value>
</property>

<!-- 整合hive 用户代理设置 -->
<property>
    <name>hadoop.proxyuser.root.hosts</name>
    <value>*</value>
</property>

<property>
    <name>hadoop.proxyuser.root.groups</name>
    <value>*</value>
</property>

hdfs-site.xml

<!-- 设置SNN进程运行机器位置信息 -->
<property>
    <name>dfs.namenode.secondary.http-address</name>
    <value>node2:9868</value>
</property>

mapred-site.xml

<!-- 设置MR程序默认运行模式: yarn集群模式 local本地模式 -->
<property>
  <name>mapreduce.framework.name</name>
  <value>yarn</value>
</property>

<!-- MR程序历史服务器端地址 -->
<property>
  <name>mapreduce.jobhistory.address</name>
  <value>node1:10020</value>
</property>
 
<!-- 历史服务器web端地址 -->
<property>
  <name>mapreduce.jobhistory.webapp.address</name>
  <value>node1:19888</value>
</property>

<property>
  <name>yarn.app.mapreduce.am.env</name>
  <value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value>
</property>

<property>
  <name>mapreduce.map.env</name>
  <value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value>
</property>

<property>
  <name>mapreduce.reduce.env</name>
  <value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value>
</property>

yarn-site.xml

<!-- 设置YARN集群主角色运行机器位置 -->
<property>
	<name>yarn.resourcemanager.hostname</name>
	<value>node1</value>
</property>

<property>
    <name>yarn.nodemanager.aux-services</name>
    <value>mapreduce_shuffle</value>
</property>

<!-- 是否将对容器实施物理内存限制 -->
<property>
    <name>yarn.nodemanager.pmem-check-enabled</name>
    <value>false</value>
</property>

<!-- 是否将对容器实施虚拟内存限制。-->
<property>
    <name>yarn.nodemanager.vmem-check-enabled</name>
    <value>false</value>
</property>

<!-- 开启日志聚集 -->
<property>
  <name>yarn.log-aggregation-enable</name>
  <value>true</value>
</property>

<!-- 设置yarn历史服务器地址 -->
<property>
    <name>yarn.log.server.url</name>
    <value>http://node1:19888/jobhistory/logs</value>
</property>

<!-- 保存的时间7天 -->
<property>
  <name>yarn.log-aggregation.retain-seconds</name>
  <value>604800</value>
</property>

workers

node1
node2
node3

1.2.4. scp安装包到其他机器

cd /export/server

scp -r hadoop-3.3.0 root@node2:/export/server
scp -r hadoop-3.3.0 root@node3:/export/server

1.2.5. Hadoop环境变量配置

vim /etc/profile

# set hadoop env
export HADOOP_HOME=/export/server/hadoop-3.3.0
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
[root@node1 server]# scp /etc/profile node2:/etc/
[root@node1 server]# scp /etc/profile node3:/etc/

[root@node1 server]# source /etc/profile
[root@node2 ~]# source /etc/profile
[root@node3 ~]# source /etc/profile

1.2.6. hadoop namenode format

(首次启动)格式化namenode

hdfs namenode -format

1.2.7. 在windows配置 ip地址映射

C:\Windows\System32\drivers\etc\hosts 文件

192.168.52.161 node1 
192.168.52.162 node2
192.168.52.163 node3

1.2.8. Hadoop集群启动

1.2.8.1. 单节点逐个启动
[root@node1 server]# hdfs --daemon start namenode
[root@node1 server]# hdfs --daemon start datanode
[root@node1 server]# yarn --daemon start resourcemanager
[root@node1 server]# yarn --daemon start nodemanager
[root@node1 server]# mapred --daemon start historyserver

[root@node2 ~]# hdfs --daemon start secondarynamenode
[root@node2 ~]# yarn --daemon start nodemanager
[root@node2 ~]# hdfs --daemon start datanode

[root@node3 ~]# yarn --daemon start nodemanager
[root@node3 ~]# hdfs --daemon start datanode
1.2.8.2. 脚本一键启动
[root@node1 ~]# start-dfs.sh 
[root@node1 ~]# start-yarn.sh 
[root@node1 server]# mapred --daemon start historyserver

在这里插入图片描述

1.2.9. Hadoop集群关闭

1.2.9.1. 单节点逐个启动
[root@node1 server]# hdfs --daemon stop namenode
[root@node1 server]# hdfs --daemon stop datanode
[root@node1 server]# yarn --daemon stop resourcemanager
[root@node1 server]# yarn --daemon stop nodemanager
[root@node1 server]# mapred --daemon stop historyserver

[root@node2 ~]# hdfs --daemon stop secondarynamenode
[root@node2 ~]# yarn --daemon stop nodemanager
[root@node2 ~]# hdfs --daemon stop datanode

[root@node3 ~]# yarn --daemon stop nodemanager
[root@node3 ~]# hdfs --daemon stop datanode
1.2.9.2. 脚本一键启动
[root@node1 ~]# stop-dfs.sh 
[root@node1 ~]# stop-yarn.sh 
[root@node1 server]# mapred --daemon stop historyserver

1.2.10. 编写自定义一键脚本

1.2.10.1. 自定义一键启动

[root@node1 onekey]# vim /onekey/hd1_start.sh

#!/bin/bash

/export/server/hadoop-3.3.0/sbin/start-dfs.sh
/export/server/hadoop-3.3.0/sbin/start-yarn.sh
/export/server/hadoop-3.3.0/bin/mapred --daemon start historyserver
1.2.10.2. 自定义一键关闭

[root@node1 onekey]# vim /onekey/hd2_stop.sh

#!/bin/bash

/export/server/hadoop-3.3.0/sbin/stop-dfs.sh
/export/server/hadoop-3.3.0/sbin/stop-yarn.sh
/export/server/hadoop-3.3.0/bin/mapred --daemon stop historyserver
1.2.10.3. 修建自定义脚本权限
[root@node1 onekey]# chmod 777 /onekey/*
1.2.10.4. 启动测试
[root@node1 onekey]# /onekey/hd1_start.sh
[root@node1 onekey]# jps
1.2.10.5. 关闭测试
[root@node1 onekey]# /onekey/hd2_stop.sh
[root@node1 onekey]# jps

1.2.11. Hadoop初体验

HDFS集群:http://node1:9870/
YARN集群:http://node1:8088/
historyserver:http://node1:19888/\
### 回答1: 很高兴为您提供CentOS 7搭建Hadoop 3.3.集群的手记。 1. 安装Java 首先,需要安装Java。可以使用以下命令安装OpenJDK 8: sudo yum install java-1.8.-openjdk-devel 2. 下载Hadoop 下载Hadoop 3.3.版本,并将其解压缩到/opt目录下: sudo tar -xzf hadoop-3.3..tar.gz -C /opt 3. 配置Hadoop 进入Hadoop目录并编辑hadoop-env.sh文件: cd /opt/hadoop-3.3. sudo nano etc/hadoop/hadoop-env.sh 将JAVA_HOME设置为Java安装路径: export JAVA_HOME=/usr/lib/jvm/java-1.8.-openjdk 编辑core-site.xml文件: sudo nano etc/hadoop/core-site.xml 添加以下内容: <configuration> <property> <name>fs.defaultFS</name> <value>hdfs://localhost:900</value> </property> </configuration> 编辑hdfs-site.xml文件: sudo nano etc/hadoop/hdfs-site.xml 添加以下内容: <configuration> <property> <name>dfs.replication</name> <value>1</value> </property> <property> <name>dfs.namenode.name.dir</name> <value>/opt/hadoop-3.3./data/namenode</value> </property> <property> <name>dfs.datanode.data.dir</name> <value>/opt/hadoop-3.3./data/datanode</value> </property> </configuration> 编辑mapred-site.xml文件: sudo cp etc/hadoop/mapred-site.xml.template etc/hadoop/mapred-site.xml sudo nano etc/hadoop/mapred-site.xml 添加以下内容: <configuration> <property> <name>mapreduce.framework.name</name> <value>yarn</value> </property> </configuration> 编辑yarn-site.xml文件: sudo nano etc/hadoop/yarn-site.xml 添加以下内容: <configuration> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> <property> <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name> <value>org.apache.hadoop.mapred.ShuffleHandler</value> </property> </configuration> 4. 启动Hadoop 格式化Hadoop文件系统: sudo bin/hdfs namenode -format 启动Hadoop: sudo sbin/start-all.sh 5. 验证Hadoop 在浏览器中访问http://localhost:987/,可以看到Hadoop集群的状态。 在Hadoop集群中创建一个目录: sudo bin/hdfs dfs -mkdir /test 在Hadoop集群中上传一个文件: sudo bin/hdfs dfs -put etc/hadoop/core-site.xml /test 在Hadoop集群中查看文件: sudo bin/hdfs dfs -ls /test 以上就是CentOS 7搭建Hadoop 3.3.集群的手记,希望对您有所帮助。 ### 回答2: 本篇文章主要介绍了如何在CentOS7系统上搭建Hadoop-3.3.0的集群,并在这个过程中遇到的一些问题和解决方案。 一、环境准备 操作系统:CentOS7 JDK版本:1.8.0_282 Hadoop版本:hadoop-3.3.0.tar.gz(可自行到官网下载) 二、系统设置 1、关闭防火墙 因为Hadoop集群需要互相通信和数据传输,所以需要关闭系统的防火墙,以避免互相之间的阻拦。 systemctl stop firewalld systemctl disable firewalld 2、设置hostname 为了方便节点之间的通信,需要给每个节点设置一个唯一的hostname。可以通过以下命令设置: hostnamectl set-hostname <hostname> 三、安装 JDK Hadoop运行依赖于JDK,需要先安装JDK。这里默认已经安装了openjdk-1.8.0_282版本,因此就不再重复说明了。如果您还没有安装JDK,可以通过以下命令进行安装: yum install java-1.8.0-openjdk-devel.x86_64 四、安装 Hadoop 1、解压缩 Hadoop 将下载好的hadoop-3.3.0.tar.gz复制到/opt/目录下,并解压缩: tar -zxvf hadoop-3.3.0.tar.gz 2、配置Hadoop环境变量 配置Hadoop环境变量,可以方便我们在任何地方都能够使用hadoop相关命令。在/etc/profile.d/目录下创建一个hadoop.sh文件,输入以下内容: export HADOOP_HOME=/opt/hadoop-3.3.0 export PATH=$HADOOP_HOME/bin:$PATH 最后执行以下命令,让环境变量生效: source /etc/profile 3、配置Hadoop 进入hadoop-3.3.0目录下,修改etc/hadoop/hadoop-env.sh文件,将JAVA_HOME指向正确的JDK目录: export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.282.b08-1.el7_9.x86_64 接下来修改etc/hadoop/core-site.xml文件,添加以下配置: <configuration> <property> <name>fs.defaultFS</name> <value>hdfs://<NameNode_IP>:9000</value> </property> </configuration> 其中,NameNode_IP需要替换为NameNode的IP地址。 修改etc/hadoop/hdfs-site.xml文件,添加以下配置: <configuration> <property> <name>dfs.replication</name> <value>2</value> </property> <property> <name>dfs.namenode.name.dir</name> <value>/opt/hdfs/namenode</value> </property> <property> <name>dfs.datanode.data.dir</name> <value>/opt/hdfs/datanode</value> </property> <property> <name>dfs.namenode.datanode.registration.ip-hostname-check</name> <value>false</value> </property> </configuration> 其中,dfs.replication表示副本数,dfs.namenode.name.dir表示NameNode元数据的存放路径,dfs.datanode.data.dir表示DataNode数据的存放路径,dfs.namenode.datanode.registration.ip-hostname-check设置为false表示关闭IP和hostname的检查,否则可能会导致节点无法正常注册。 最后,在etc/hadoop/mapred-site.xml和etc/hadoop/yarn-site.xml文件中添加以下内容: mapred-site.xml: <configuration> <property> <name>mapreduce.framework.name</name> <value>yarn</value> </property> </configuration> yarn-site.xml: <configuration> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> </configuration> 五、配置ssh免密登录 在Hadoop集群中,各个节点之间需要相互通信,并且需要使用ssh远程登录操作。为了方便操作,可以实现ssh免密登录,即在各个节点之间可以直接相互访问而无需输入密码。具体实现步骤如下: 1、在每个节点上生成公钥和私钥 ssh-keygen -t rsa 2、将公钥拷贝到各个节点上 ssh-copy-id -i ~/.ssh/id_rsa.pub <hostname> 其中,<hostname>需要替换成对应节点的hostname。 3、测试是否成功 ssh <hostname> 如果可以直接登录而无需输入密码,则表示ssh免密登录配置成功。 六、启动Hadoop集群 1、启动Hadoop 首先需要启动NameNode和DataNode,使用以下命令启动: hadoop-daemon.sh start namenode hadoop-daemon.sh start datanode 然后启动ResourceManager和NodeManager,使用以下命令启动: yarn-daemon.sh start resourcemanager yarn-daemon.sh start nodemanager 启动成功后使用jps命令查看进程,看是否启动正常。 2、验证Hadoop 在启动Hadoop集群之后,可以通过以下命令验证是否正常: hadoop fs -mkdir /test hadoop fs -ls / 如果命令执行没有报错,则表示Hadoop集群启动成功并且在操作系统上正常运行。 以上便是在CentOS7系统上搭建Hadoop-3.3.0集群的过程。在实际操作中可能还会遇到一些其他的问题,需要我们不断的尝试和调试。相信通过这篇文章,读者可以对Hadoop的安装和配置有更深入的理解,并可以顺利搭建自己的Hadoop集群。 ### 回答3: CentOS 7是一种广泛使用的Linux操作系统,用于服务器和桌面应用程序。Hadoop是一个开源的分布式计算框架,专门用于处理大规模数据。在本文中,将介绍如何在CentOS 7上安装Hadoop 3.3.0,并建立Hadoop集群。 1. 安装Java 由于Hadoop是使用Java编写的,因此必须首先在系统上安装Java。可以使用以下命令来安装Oracle Java: ```shell $ sudo yum install java-1.8.0-openjdk-devel ``` Java将安装在`/usr/lib/jvm/java-1.8.0-openjdk`目录中。 2. 配置DNS 为了更好地管理Hadoop集群,可以将每个节点的IP地址映射到相应的主机名。可以在/etc/hosts文件中添加这些条目。例如,假设存在以下主机: - 192.168.1.10:master - 192.168.1.11:slave1 - 192.168.1.12:slave2 可以在每个节点上编辑/etc/hosts文件,添加以下内容: ```shell 192.168.1.10 master 192.168.1.11 slave1 192.168.1.12 slave2 ``` 3. 安装Hadoop 可以从Hadoop官方网站下载Hadoop二进制文件,或者使用以下命令下载并解压缩最新版本: ```shell $ wget https://mirrors.tuna.tsinghua.edu.cn/apache/hadoop/common/hadoop-3.3.0/hadoop-3.3.0.tar.gz $ tar -xzvf hadoop-3.3.0.tar.gz -C /opt ``` Hadoop将解压缩到/opt/hadoop-3.3.0目录中。 4. 配置Hadoop 接下来需要配置Hadoop。可以在/opt/hadoop-3.3.0/etc/hadoop目录中找到所有Hadoop配置文件。必须编辑以下文件: - core-site.xml - hdfs-site.xml - mapred-site.xml - yarn-site.xml 第一个文件是core-site.xml。在每个节点上打开此文件,并添加以下配置: ```xml <configuration> <property> <name>fs.defaultFS</name> <value>hdfs://master:9000/</value> </property> </configuration> ``` 第二个文件是hdfs-site.xml。在每个节点上打开此文件,并添加以下配置: ```xml <configuration> <property> <name>dfs.replication</name> <value>2</value> </property> <property> <name>dfs.namenode.name.dir</name> <value>/opt/hadoop-3.3.0/data/namenode</value> </property> <property> <name>dfs.datanode.data.dir</name> <value>/opt/hadoop-3.3.0/data/datanode</value> </property> </configuration> ``` 第三个文件是mapred-site.xml。在每个节点上打开此文件,并添加以下配置: ```xml <configuration> <property> <name>mapreduce.framework.name</name> <value>yarn</value> </property> </configuration> ``` 最后一个文件是yarn-site.xml。在每个节点上打开此文件,并添加以下配置: ```xml <configuration> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> <property> <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name> <value>org.apache.hadoop.mapred.ShuffleHandler</value> </property> </configuration> ``` 5. 配置SSH 为了在集群节点之间进行通信,必须配置SSH。可以使用以下命令在每个节点上安装SSH客户端和服务器: ```shell $ sudo yum install openssh-server openssh-clients ``` 要在所有节点上免密码认证,必须使用以下命令生成SSH秘钥: ```shell $ ssh-keygen -t rsa ``` 按照默认设置创建SSH秘钥对,并在使用此命令的过程中将公共SSH秘钥添加到所有节点上的~/.ssh/authorized_keys文件中: ```shell $ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys ``` 6. 启动Hadoop 现在,可以在集群节点上启动Hadoop。首先要格式化NameNode: ```shell $ /opt/hadoop-3.3.0/bin/hdfs namenode -format ``` 然后,在master节点上启动Hadoop: ```shell $ /opt/hadoop-3.3.0/sbin/start-all.sh ``` 这将启动Hadoop集群中的所有节点。可以在每个节点上检查日志,以确保节点正在正确运行: ```shell $ tail -f /opt/hadoop-3.3.0/logs/*.log ``` 7. 使用Hadoop 现在,可以在Hadoop集群上运行MapReduce作业。可以使用Hadoop的example程序来运行简单的MapReduce任务。例如,可以使用以下命令来运行wordcount程序: ```shell $ /opt/hadoop-3.3.0/bin/hadoop jar /opt/hadoop-3.3.0/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.0.jar wordcount input output ``` 该命令将从input目录中读取数据,并将结果写入output目录。可以使用以下命令查看输出: ```shell $ /opt/hadoop-3.3.0/bin/hdfs dfs -cat output/* ``` 以上是搭建Hadoop集群的基本步骤,如果需要实现更复杂的功能,可以在这些基本步骤的基础上进行进一步的配置和调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值