蓝桥杯,区间k大数查询,快速排序思想

这篇博客介绍了如何使用快速排序算法解决求解数组中第k大数的问题。文章详细讲解了两种方法:直接排序和随机化快速排序,并提供了C++代码实现。通过随机选取主元的快速排序,可以在平均时间复杂度为O(n)的情况下找到第k大的数,适用于多次查询的场景。
摘要由CSDN通过智能技术生成

试题 算法训练 区间k大数查询

资源限制
时间限制:1.0s 内存限制:256.0MB

问题描述
给定一个序列,每次询问序列中第l个数到第r个数中第K大的数是哪个。

输入格式
第一行包含一个数n,表示序列长度。
第二行包含n个正整数,表示给定的序列。
第三个包含一个正整数m,表示询问个数。
接下来m行,每行三个数l,r,K,表示询问序列从左往右第l个数到第r个数中,从大往小第K大的数是哪个。序列元素从1开始标号。

输出格式
总共输出m行,每行一个数,表示询问的答案。
样例输入
5
1 2 3 4 5
2
1 5 2
2 3 2

样例输出
4
2

数据规模与约定
对于30%的数据,n,m<=100;

对于100%的数据,n,m<=1000;

保证k<=(r-l+1),序列中的数<=106。


前两周的算法课刚好学了快速排序,今天做蓝桥杯竟然遇到了,正好复习一下。

解题思路

这个题目就是:求一个数组中第k大的数字。课上讲的是求第k小的,所以我这里就按第k小的讲了,这两个的转换很简单。

给定一个无序数组,要求其中第k小的数字;

解法1

首先我们可以想到的是对这个数组排序,然后直接根据下标求出第k小的数字。
排序算法时间复杂度的下界是 O ( n l g n ) O(nlgn) O(nlgn), 这意味着我们查询一遍整个数组的时间复杂度是 O ( n l g n ) O(nlgn) O(nlgn),但是题目说要查询m次,所以整个算法的时间复杂度是 O ( m ∗ n l n g ) O(m*nlng) O(mnlng) ,看一下给的时间这个时间复杂度应该可以接受。
要写程序的话,直接每次调用Cpp的qsort库函数,然后选取第k大的下标,这个就很简单了。

解法2

这里介绍一下快速排序:
快速排序是分治思想的代表,其分的过程叫做数组划分。快速排序是一种算法的思想,其应用有很多,次序选择问题就是应用数组划分的思想来找数组中第k小的数,如果在数组划分选取主元的时候采用随机选取,那么该算法的时间复杂度就是 O ( n ) O(n) O(n)
具体看我以前的博客。

选取一下课件的伪代码
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

时间复杂度计算用的期望,比较复杂,就不写了,结论就是:
随机选取主元的次序选择问题时间复杂度是 O ( n ) O(n) O(n)

代码实现

#include <iostream>
#include <stdlib.h> 
#include <string.h>
using namespace std;

int A[1010]; // 原始数组
int B[1010]; // 用来查询的子数组  
int Partation(int p, int r) // 数组划分 
{
	int t = rand()%(r - p + 1) + p; // t 属于 [p, r] 
	swap(B[t], B[r]);
	int z = B[r];
	int i = p - 1;
	for (int j = p; j < r; j++) {
		if (B[j] <= B[r]) swap(B[j], B[++i]);
	}
	swap(B[i+1], B[r]);
	return i+1; // 主元所在的位置 
}

int GetKthNum(int p, int r,int k)
{
	int q = Partation(p, r);
	if (k == q-p+1) return B[q];
	else if (k < q-p+1) return GetKthNum(p, q-1, k);
	else if (k > q-p+1) return GetKthNum(q+1, r, k -(q-p+1));
} 
int main()
{
	int n,m,l,r,k;
	cin >> n;
	for (int i = 1; i <= n; i++) cin >> A[i];
	cin >> m;
	while (m--) {
		cin >> l >> r >> k;
		memset(B, 0, sizeof(B)); // 清除B的数据
		for (int i = l; i <= r; i++) B[i] = A[i];
		cout << GetKthNum(l, r, (r-l+1) -k+1) << endl;  // k表示第k小的数,
														//  (r-l+1) -k+1 表示第k大的数, 自己写个1-10看看 
	}
	return 0;
} 

时间复杂度是 O ( m ∗ n ) O(m*n) O(mn)
理论上说这应该是最小的时间复杂度了,蓝桥杯评测结果是15ms

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值