试题 算法训练 区间k大数查询
资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
给定一个序列,每次询问序列中第l个数到第r个数中第K大的数是哪个。
输入格式
第一行包含一个数n,表示序列长度。
第二行包含n个正整数,表示给定的序列。
第三个包含一个正整数m,表示询问个数。
接下来m行,每行三个数l,r,K,表示询问序列从左往右第l个数到第r个数中,从大往小第K大的数是哪个。序列元素从1开始标号。
输出格式
总共输出m行,每行一个数,表示询问的答案。
样例输入
5
1 2 3 4 5
2
1 5 2
2 3 2
样例输出
4
2
数据规模与约定
对于30%的数据,n,m<=100;
对于100%的数据,n,m<=1000;
保证k<=(r-l+1),序列中的数<=106。
前两周的算法课刚好学了快速排序,今天做蓝桥杯竟然遇到了,正好复习一下。
解题思路
这个题目就是:求一个数组中第k大的数字。课上讲的是求第k小的,所以我这里就按第k小的讲了,这两个的转换很简单。
给定一个无序数组,要求其中第k小的数字;
解法1
首先我们可以想到的是对这个数组排序,然后直接根据下标求出第k小的数字。
排序算法时间复杂度的下界是
O
(
n
l
g
n
)
O(nlgn)
O(nlgn), 这意味着我们查询一遍整个数组的时间复杂度是
O
(
n
l
g
n
)
O(nlgn)
O(nlgn),但是题目说要查询m次,所以整个算法的时间复杂度是
O
(
m
∗
n
l
n
g
)
O(m*nlng)
O(m∗nlng) ,看一下给的时间这个时间复杂度应该可以接受。
要写程序的话,直接每次调用Cpp的qsort库函数,然后选取第k大的下标,这个就很简单了。
解法2
这里介绍一下快速排序:
快速排序是分治思想的代表,其分的过程叫做数组划分。快速排序是一种算法的思想,其应用有很多,次序选择问题就是应用数组划分的思想来找数组中第k小的数,如果在数组划分选取主元的时候采用随机选取,那么该算法的时间复杂度就是
O
(
n
)
O(n)
O(n)
具体看我以前的博客。
选取一下课件的伪代码
时间复杂度计算用的期望,比较复杂,就不写了,结论就是:
随机选取主元的次序选择问题时间复杂度是
O
(
n
)
O(n)
O(n)
代码实现
#include <iostream>
#include <stdlib.h>
#include <string.h>
using namespace std;
int A[1010]; // 原始数组
int B[1010]; // 用来查询的子数组
int Partation(int p, int r) // 数组划分
{
int t = rand()%(r - p + 1) + p; // t 属于 [p, r]
swap(B[t], B[r]);
int z = B[r];
int i = p - 1;
for (int j = p; j < r; j++) {
if (B[j] <= B[r]) swap(B[j], B[++i]);
}
swap(B[i+1], B[r]);
return i+1; // 主元所在的位置
}
int GetKthNum(int p, int r,int k)
{
int q = Partation(p, r);
if (k == q-p+1) return B[q];
else if (k < q-p+1) return GetKthNum(p, q-1, k);
else if (k > q-p+1) return GetKthNum(q+1, r, k -(q-p+1));
}
int main()
{
int n,m,l,r,k;
cin >> n;
for (int i = 1; i <= n; i++) cin >> A[i];
cin >> m;
while (m--) {
cin >> l >> r >> k;
memset(B, 0, sizeof(B)); // 清除B的数据
for (int i = l; i <= r; i++) B[i] = A[i];
cout << GetKthNum(l, r, (r-l+1) -k+1) << endl; // k表示第k小的数,
// (r-l+1) -k+1 表示第k大的数, 自己写个1-10看看
}
return 0;
}
时间复杂度是
O
(
m
∗
n
)
O(m*n)
O(m∗n)
理论上说这应该是最小的时间复杂度了,蓝桥杯评测结果是15ms