基于 BERT 的文本匹配实践
文本匹配是自然语言处理(NLP)领域中的核心任务,应用广泛,如句子相似度判断、问答系统中的问题与答案匹配等。随着预训练模型(如 BERT)的出现,文本匹配任务的精度得到了显著提升。
本文将带大家使用 BERT(Bidirectional Encoder Representations from Transformers)实现一个基于句子匹配的实践,并展示如何评估模型的性能。
一、数据集介绍:GLUE MRPC
在这篇博客中,我们使用的是来自 GLUE 基准中的 MRPC(Microsoft Research Paraphrase Corpus)数据集。MRPC 是一个句子对分类任务,要求模型判断两句话是否是具有相同含义的同义句(paraphrase)。
- 数据集来源:GLUE(General Language Understanding Evaluation)基准数据集中的一个子任务。
- 任务描述:每个样本由两个句子组成,模型需要判断它们是否具有相似含义,属于二分类问题(0 表示不同义,1 表示同义)。
- 数据集规模:
- 训练集:3,668 个样本
- 验证集:408 个样本
二、BERT 模型介绍
BERT(Bidirectional Encoder Representations from Transformers)是由 Google 提出的双向 Transformer 模型,具有强大的上下文理解能力。BERT 的一个关键创新是其双向性,即在处理每个词时,同时考虑其左右两边的上下文,这使得 BERT 能够更好地捕捉语言中的复杂语义关系。
BERT 的关键特性:
- 双向 Transformer:BERT 是基于 Transformer 架构的模型,通过自注意力机制来学习句子中每个单词的上下文信息。
- 预训练任务:
- Masked Language Model (MLM):在输入序列中随机遮蔽一些单词,模型需要预测这些被遮蔽的单词。
- Next Sentence Prediction (NSP):给定两个句子,模型需要判断第二个句子是否为第一个句子的续句。
- 微调:BERT 可以通过微调来适应具体的下游任务,例如文本分类、情感分析、句子相似度判断等。
在本实践中,我们将使用 BERT 进行句子匹配任务,判断两个句子是否具有相同的含义。
三、评价指标介绍
在二分类任务中,我们常用以下评价指标来评估模型的性能:
- 准确率 (Accuracy):预测正确的样本占总样本数的比例,反映了模型整体的预测准确程度。
- 精度 (Precision):模型预测为正类的样本中,实际为正类的样本比例,衡量的是预测结果的准确性。
- 召回率 (Recall):实际为正类的样本中,被模型正确预测为正类的样本比例,衡量的是模型对正类的敏感度。
- F1 分数 (F1 Score):精度和召回率的调和平均,综合衡量模型的表现。
四、实践案例:基于 BERT 的文本匹配
1. 安装依赖
首先,我们需要安装 Hugging Face 的 transformers
和 datasets
库:
!pip install transformers datasets
2. 加载数据集
我们将从 Hugging Face 的 datasets
库中加载 GLUE 数据集的 MRPC 子集:
from datasets import load_dataset
# 加载 GLUE MRPC 数据集
dataset = load_dataset("glue", "mrpc")
3. 数据预处理
使用 BERT 的分词器将句子对编码为模型所需的 input_ids
和 attention_mask
:
from transformers import BertTokenizer
# 加载 BERT 分词器
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
# 定义分词函数
def tokenize_function(examples):
return tokenizer(examples['sentence1'], examples['sentence2'], padding='max_length', truncation=True, max_length=128)
# 对数据集进行分词处理
tokenized_datasets = dataset.map(tokenize_function, batched=True)
# 删除不需要的列
tokenized_datasets = tokenized_datasets.remove_columns(["sentence1", "sentence2", "idx"])
tokenized_datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])
4. 加载预训练的 BERT 模型
加载预训练的 BertForSequenceClassification
模型,并进行微调:
from transformers import BertForSequenceClassification
# 加载 BERT 模型用于句子分类任务
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
5. 创建数据加载器
使用 PyTorch 的 DataLoader
来处理训练和验证集:
from torch.utils.data import DataLoader
train_dataset = tokenized_datasets['train']
eval_dataset = tokenized_datasets['validation']
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
eval_loader = DataLoader(eval_dataset, batch_size=16)
6. 模型训练
定义优化器和训练过程:
import torch
from torch.optim import AdamW
# 设置设备(GPU 或 CPU)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# 定义优化器
optimizer = AdamW(model.parameters(), lr=2e-5)
# 训练函数
def train_model(model, train_loader, optimizer):
model.train()
total_loss = 0
for batch in train_loader:
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
labels = batch['label'].to(device)
optimizer.zero_grad()
outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
loss = outputs.loss
loss.backward()
optimizer.step()
total_loss += loss.item()
return total_loss / len(train_loader)
# 训练模型
epochs = 3
for epoch in range(epochs):
avg_train_loss = train_model(model, train_loader, optimizer)
print(f'Epoch {epoch + 1}/{epochs}, Average Training Loss: {avg_train_loss:.4f}')
7. 评估模型
在验证集上评估模型,并打印第一个样本的预测结果:
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
# 评估函数
def evaluate_model_with_print(model, eval_loader, raw_dataset):
model.eval()
preds, labels = [], []
with torch.no_grad():
for i, batch in enumerate(eval_loader):
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
label_ids = batch['label'].to(device)
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
logits = outputs.logits
preds.append(torch.argmax(logits, dim=-1).cpu().numpy())
labels.append(label_ids.cpu().numpy())
if i == 0:
prediction = torch.argmax(logits, dim=-1).cpu().numpy()[0]
true_label = label_ids.cpu().numpy()[0]
print(f"Sentence 1: {raw_dataset[i]['sentence1']}")
print(f"Sentence 2: {raw_dataset[i]['sentence2']}")
print(f"True label: {true_label}")
print(f"Predicted label: {prediction}")
preds = np.concatenate(preds)
labels = np.concatenate(labels)
accuracy = accuracy_score(labels, preds)
precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='binary')
return accuracy, precision, recall, f1
# 运行评估
accuracy, precision, recall, f1 = evaluate_model_with_print(model, eval_loader, dataset['validation'])
print(f'Accuracy: {accuracy:.4f}, Precision: {precision:.4f}, Recall: {recall:.4f}, F1: {f1:.4f}')
8. 保存模型
训练完成后,将模型和分词器保存,以便后续使用:
# 保存模型和分词器
model.save_pretrained('bert-text-matching-model')
tokenizer.save_pretrained('bert-text-matching-model')
五、总结
本文介绍了如何使用 BERT 模型进行文本匹配任务的实践。通过 Hugging Face 的 datasets
和 transformers
库,加载 GLUE MRPC 数据集,并对 BERT 进行微调,最终通过准确率、精度、召回率和 F1 分数等指标评估模型性能。BERT 强大的双向 Transformer 架构使其能够有效捕捉上下文信息,极大提升了文本匹配任务的精度。
通过这个案例,你可以轻松应用 BERT 解决类似的文本匹配问题,如问答系统、相似句子匹配等。
如果你希望了解更多关于算法和力扣刷题的知识,欢迎关注微信公众号【算法最TOP】!