博客标题:扩散模型入门与实战:基于CIFAR-10的数据生成
引言
扩散模型(Diffusion Model)是生成式模型中的一种新兴方法,近年来广泛应用于图像生成领域。与生成对抗网络(GAN)和变分自编码器(VAE)等模型不同,扩散模型通过模拟数据的随机扩散过程,逐步将噪声添加到数据中,最终生成出高质量的图像。本文将以CIFAR-10数据集为例,介绍扩散模型的基本原理,并通过实践展示如何使用PyTorch实现一个简单的扩散模型。
一、扩散模型简介
扩散模型的基本思路是基于“从噪声到数据”的生成过程,这与传统生成模型不同。它通过模拟物理世界中的扩散现象,逐步添加噪声,将数据破坏到接近纯噪声的状态。接着,模型学习如何通过逆向过程,从噪声恢复数据。
1.1 前向扩散过程
在扩散模型中,前向过程是逐步给数据添加噪声的过程。这一过程通常是由高斯噪声控制的,其最终目的是将输入数据逐渐转化为白噪声。
数学上,前向过程可描述为:
xt=1−βtxt−1+βtϵ x_t = \sqrt{1 - \beta_t} x_{t-1} + \sqrt{\beta_t} \epsilon xt=1−βtxt−1+βtϵ
其中,

最低0.47元/天 解锁文章
5547

被折叠的 条评论
为什么被折叠?



