3. 解谜游戏
成绩 10 开启时间 2020年09月7日 星期一 09:00 折扣 0.8 折扣时间 2020年09月15日 星期二 09:00 允许迟交 否 关闭时间 2020年10月10日 星期六 23:00 Description
小张是一个密室逃脱爱好者,在密室逃脱的游戏中,你需要解开一系列谜题最终拿到出门的密码。现在小张需要打开一个藏有线索的箱子,但箱子上有下图所示的密码锁。
每个点是一个按钮,每个按钮里面有一个小灯。如上图,红色代表灯亮,白色代表灯灭。每当按下按钮,此按钮的灯以及其上下左右四个方向按钮的灯状态会改变(如果原来灯亮则灯灭,如果原来灯灭则灯亮)。如果小张通过按按钮将灯全部熄灭则能可以打开箱子。
对于这个密码锁,我们可以先按下左上角的按钮,密码锁状态变为下图。
再按下右下角的按钮,密码锁状态变为下图。
最后按下中间的按钮,灯全部熄灭。
现在小张给你一些密码锁的状态,请你告诉他最少按几次按钮能够把灯全部熄灭。
Input
接下来
行,每行一个长度为
的01字符串,0表示灯初始状态灭,1表示灯初始状态亮。
Output
一行一个整数,表示最少按几次按钮可以把灯全部熄灭。
Notes
第一个样例见题目描述,第二个样例按左上和右下两个按钮。
测试用例保证一定有解。
测试输入 期待的输出 时间限制 内存限制 额外进程 测试用例 1 以文本方式显示
- 3 3↵
- 100↵
- 010↵
- 001↵
以文本方式显示
- 3↵
1秒 64M 0 测试用例 2 以文本方式显示
- 2 3↵
- 111↵
- 111↵
以文本方式显示
- 2↵
1秒 64M 0
此题emmm,我想到了两种方法:高斯消元法 or 深度优先搜索。如果都是初次接触的话,那应该理解起来有难度,但是不能完全理解也没关系,多看几遍多敲几遍就好了...都是这么过来的...
下面讲讲深度优先搜索(dfs)的办法。
你可以这样理解深搜:依次枚举所有情况,直到枚举完,我们就搜索到一个结果。
思路
针对这个题,求最少按键次数,首先要知道:
- 一个按键最多按一次:如果有两次及以上,那么就会产生抵消,那么你的步骤肯定不是最少的。
- 按键的顺序和最终结果无关:同样按下几个按键,以不同顺序去按下当然结果相同。
如果我们暴力枚举:对每一个按键有两种情况(按下 or 不动),那么我们最多需要枚举 次,这真是个可怕的数字...那肯定有更优的算法。emmm下面的思路的来由只可意会不可言传,不说咋想出来的了,你看完这个方法能懂就够了。直接上核心算法吧:
- 首先我们仅枚举第一排灯的按键方式:那么我们最多需要枚举
次,还算可以接受...记录下每次枚举的情况下第一排按下的次数count
- 对于每一种枚举的结果(第一排灯已经操作完),我们接下来依次逐行处理。(比如说第一行某几个灯亮着,我们按下它们对应下一行的灯,这样第一行的灯我们通过第二行按键全部熄灭掉了;接着我们再讨论第二行,用第三行的按键将第二行全部熄灭...以此类推)。如果最后将倒数第二排搞定后,最后一排也全灭了,说明这个枚举是可行的,记录整个过程中的按键次数cur;否则,这个枚举不可行的,我们需要重新寻找其他枚举方案。
- 对于某次枚举下,接着逐行操作成功全熄灭,那么说明我们用 count + cur 次数完成,这个时候要更新答案的最小值。
代码实现
此题代码实现较复杂,锻炼编程能力。如果编不出来的话,不必太灰心,只能慢慢熟练了。题解也很难把编程能力一股脑地塞给你,这种能力都是靠你一点点码出来的,对吧~ 但是提供可读性较好的代码给大家参考,学习编程很重要的部分就是学习别人的代码~
或许你还一股脑地将代码都写在可怜的 main 函数内(如果不是,就当我没说),提高程序可读性第一步:分功能写函数。
首先我先写几个要用到的功能模块(配合注释看应该可以看懂吧,不行的话先去学c/c++语法吧),后面都会被调用到的函数。全局变量有这些
#define MAX_LEN 17
int n, m, a[MAX_LEN][MAX_LEN]; //题中的输入
int cur[MAX_LEN][MAX_LEN]; //存储处理完第一排后的状态
int ans = 256; //存储答案:最小步骤。初始为最大值256步
1、 实现对某一整数异或操作的函数
/* 将p位置上的整数做一个反(异或)操作:
* 1变成0, 0变成1 */
void change(int *p) {
if (*p == 1)
*p = 0;
else
*p = 1;
}
2、 实现对灯按下的改变的函数
/* 设定将a[i][j]处按下所产生的反应
* 注意:a数组根据传递的地址而定 */
void push(int a[][MAX_LEN], int i, int j) {
change(&a[i][j]);
if (i - 1 >= 0)
change(&a[i - 1][j]);
if (j - 1 >= 0)
change(&a[i][j - 1]);
if (i + 1 < n)
change(&a[i + 1][j]);
if (j + 1 < m)
change(&a[i][j + 1]);
}
3、深度优先搜索(枚举第一排灯的按键情况)
这里先不管第8行调用到的calc函数,你只要直到calc函数可以对某次枚举情况计算处后续的步骤数目即可。一层层理解,先理解dfs的操作,这是最难懂的。说句题外话,我第一次写dfs程序也很晕...dfs本质是递归嘛,看dfs程序的秘诀就是:宏观地去看,当递归地调用自身时,你宏观理解此处递归调用的结果,不必过于深入递归函数纠结。(emmmm如果这句话不能理解的话,你早晚会懂的...在经历了很多次复杂递归的毒打之后,你会很认可这句话的)
比如,我带着你理解下面这个dfs:
我们对第一排第step-1位按键的选择枚举:先按下,然后考虑下一位按键的枚举;还原(即不按下),然后考虑下一位按键的枚举。如果你能宏观地理解了这个思路,你再仔细去深究这个代码的递归实现,这样会理解得快很多。(如果你是大佬就当我没说,如果你没懂那你就再在多看几遍)。
/* 深度优先搜索,枚举第一排按键的所有按法
* step: 当前讨论第1排第step + 1个按键
* count: step之前按键一共被操作了的次数和 */
void dfs(int step, int count) {
// 深度优先搜索的终点:讨论完第一排最后一个按键了
// 已经按照一种方式将第一排操作完成
if (step == m) {
int t = calc(); //计算该基础上熄灭所有的灯需要的步数
if (t == -1) //无解
return;
if (t + count < ans) //有解,更新最小值
ans = t + count;
return;
}
push(a, 0, step); //按下第一排第step-1个按键
dfs(step + 1, count + 1);
push(a, 0, step); //再次按下(相当于还原)第一排第step-1个按键
dfs(step + 1, count);
}
4、calc函数
在calc内调用了getCur()函数,主要是将枚举结果的状态拷贝到cur数组上,否则直接在a数组上操作很难还原,会对之后的讨论产生影响。calc函数的思路就是我们算法中总结的第二步,逐行熄灭。
/* 当第一排的灯被弄完后,把灯的状态复制到cur数组中
* 便于后面的计数与操作,不会影响到原数组a */
void getCur() {
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
cur[i][j] = a[i][j];
}
/* 当第一排的灯被弄完后
* 逐排操作,计算是否能够全部灭完
* 如果不可以:返回-1;否则:返回操作次数 */
int calc() {
getCur();
int step = 0;
for (int i = 0; i < n - 1; i++)
for (int j = 0; j < m; j++) {
if (cur[i][j] == 1) {
step++;
push(cur, i + 1, j);
}
}
for (int i = 0; i < m; i++)
if (cur[n - 1][i] == 1)
return -1;
return step;
}
完整代码
好了...小鸡翅简直太保姆了,还把一个个函数拆开讲...下面还是贴上完整代码吧,大佬们或许上来就可以来看完整代码。主要是小学期初期就写dfs,怕读者们接受不了,所以或许你会觉得我很啰嗦,可能深夜3点码下这篇题解的我确实比较啰嗦...
下面就是完整代码了,主函数里主要是在处理输入。特别要注意:把每一行的换行符要吸掉!不然...你不会知道小鸡翅为啥这个题一直到深夜才写出题解,因为一直因为每次没有吸去换行符而wa了一天...一直检查各种递归啊深搜啊的地方,结果2点debug出bug的我眼泪流下来...
#include <cstdio>
#define MAX_LEN 17
int n, m, a[MAX_LEN][MAX_LEN];
int cur[MAX_LEN][MAX_LEN]; //存储处理完第一排后的状态
int ans = 256; //存储答案:最小步骤。初始为最大值256步
/* 将p位置上的整数做一个反(异或)操作:
* 1变成0, 0变成1 */
void change(int *p) {
if (*p == 1)
*p = 0;
else
*p = 1;
}
/* 设定将a[i][j]处按下所产生的反应
* 注意:a数组根据传递的地址而定 */
void push(int a[][MAX_LEN], int i, int j) {
change(&a[i][j]);
if (i - 1 >= 0)
change(&a[i - 1][j]);
if (j - 1 >= 0)
change(&a[i][j - 1]);
if (i + 1 < n)
change(&a[i + 1][j]);
if (j + 1 < m)
change(&a[i][j + 1]);
}
/* 当第一排的灯被弄完后,把灯的状态复制到cur数组中
* 便于后面的计数与操作,不会影响到原数组a */
void getCur() {
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
cur[i][j] = a[i][j];
}
/* 当第一排的灯被弄完后
* 逐排操作,计算是否能够全部灭完
* 如果不可以:返回-1;否则:返回操作次数 */
int calc() {
getCur();
int step = 0;
for (int i = 0; i < n - 1; i++)
for (int j = 0; j < m; j++) {
if (cur[i][j] == 1) {
step++;
push(cur, i + 1, j);
}
}
for (int i = 0; i < m; i++)
if (cur[n - 1][i] == 1)
return -1;
return step;
}
/* 深度优先搜索,枚举第一排按键的所有按法
* step: 当前讨论第1排第step + 1个按键
* count: step之前按键一共被操作了的次数和 */
void dfs(int step, int count) {
// 深度优先搜索的终点:讨论完第一排最后一个按键了
// 已经按照一种方式将第一排操作完成
if (step == m) {
int t = calc(); //计算该基础上熄灭所有的灯需要的步数
if (t == -1) //无解
return;
if (t + count < ans) //有解,更新最小值
ans = t + count;
return;
}
push(a, 0, step); //按下第一排第step-1个按键
dfs(step + 1, count + 1);
push(a, 0, step); //再次按下(相当于还原)第一排第step-1个按键
dfs(step + 1, count);
}
int main() {
scanf("%d%d\n", &n, &m); //一定要加上\n,作用:吸去换行符
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
char c;
c = getchar();
a[i][j] = c - '0'; //将字符转化为整数考虑
}
getchar(); //吸去换行符
}
dfs(0, 0);
printf("%d\n", ans);
}
欢迎关注个人公众号“ 鸡翅编程 ”,这里是认真且乖巧的码农一枚。
---- 做最乖巧的博客er,做最扎实的程序员 ----
旨在用心写好每一篇文章,平常会把笔记汇总成推送更新~