Python heapq库的用法介绍

本文详细介绍Python标准库heapq的使用方法,包括构建小顶堆、堆排序、获取堆中的极值、合并有序列表及替换堆中数据的具体操作。heapq库提供了一系列高效的数据结构和算法,适用于多种场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python heapq库的用法介绍

一、heapq库简介

heapq 库是Python标准库之一,提供了构建小顶堆的方法和一些对小顶堆的基本操作方法(如入堆,出堆等),可以用于实现堆排序算法。

堆是一种基本的数据结构,堆的结构是一棵完全二叉树,并且满足堆积的性质:每个节点(叶节点除外)的值都大于等于(或都小于等于)它的子节点。

堆结构分为大顶堆和小顶堆,在heapq中使用的是小顶堆:

1. 大顶堆:每个节点(叶节点除外)的值都大于等于其子节点的值,根节点的值是所有节点中最大的。

2. 小顶堆:每个节点(叶节点除外)的值都小于等于其子节点的值,根节点的值是所有节点中最小的。

在heapq库中,heapq使用的数据类型是Python的基本数据类型 list ,要满足堆积的性质,则在这个列表中,索引 k 的值要小于等于索引 2*k+1 的值和索引 2*k+2 的值(在完全二叉树中,将数据按广度优先插入,索引为k的节点的子节点索引分别为2*k+1和2*k+2)。在heapq库的源码中也有介绍,可以读一下heapq的源码,代码不多。

使用Python实现堆排序可以参考:https://blog.csdn.net/weixin_43790276/article/details/104033696

完全二叉树的特性可以参考:https://blog.csdn.net/weixin_43790276/article/details/104737870

二、使用heapq创建堆

# coding=utf-8
import heapq


array = [10, 17, 50, 7, 30, 24, 27, 45, 15, 5, 36, 21]
heap = []
for num in array:
    heapq.heappush(heap, num)
print("array:", array)
print("heap: ", heap)

heapq.heapify(array)
print("array:", array)

运行结果:

array: [10, 17, 50, 7, 30, 24, 27, 45, 15, 5, 36, 21]
heap:  [5, 7, 21, 15, 10, 24, 27, 45, 17, 30, 36, 50]
array: [5, 7, 21, 10, 17, 24, 27, 45, 15, 30, 36, 50]

heapq中创建堆的方法有两种。

heappush(heap, num),先创建一个空堆,然后将数据一个一个地添加到堆中。每添加一个数据后,heap都满足小顶堆的特性。

heapify(array),直接将数据列表调整成一个小顶堆(调整的原理参考上面堆排序的文章,heapq库已经实现了)。

两种方法实现的结果会有差异,如上面的代码中,使用heappush(heap, num)得到的堆结构如下。

使用heapify(array)得到的堆结构如下。

不过,这两个结果都满足小顶堆的特性,不影响堆的使用(堆只会从堆顶开始取数据,取出数据后会重新调整结构)。

三、使用heapq实现堆排序

array = [10, 17, 50, 7, 30, 24, 27, 45, 15, 5, 36, 21]
heap = []
for num in array:
    heapq.heappush(heap, num)
print(heap[0])
# print(heapq.heappop(heap))
heap_sort = [heapq.heappop(heap) for _ in range(len(heap))]
print("heap sort result: ", heap_sort)

运行结果:

5
heap sort result:  [5, 7, 10, 15, 17, 21, 24, 27, 30, 36, 45, 50]

先将待排序列表中的数据添加到堆中,构造一个小顶堆,打印第一个数据,可以确认它是最小值。然后依次将堆顶的值取出,添加到一个新的列表中,直到堆中的数据取完,新列表就是排序后的列表。

heappop(heap),将堆顶的数据出堆,并将堆中剩余的数据构造成新的小顶堆。

四、获取堆中的最小值或最大值

array = [10, 17, 50, 7, 30, 24, 27, 45, 15, 5, 36, 21]
heapq.heapify(array)
print(heapq.nlargest(2, array))
print(heapq.nsmallest(3, array))

运行结果:

[50, 45]
[5, 7, 10]

nlargest(num, heap),从堆中取出num个数据,从最大的数据开始取,返回结果是一个列表(即使只取一个数据)。如果num大于等于堆中的数据数量,则从大到小取出堆中的所有数据,不会报错,相当于实现了降序排序。

nsmallest(num, heap),从堆中取出num个数据,从最小的数据开始取,返回结果是一个列表。

这两个方法除了可以用于堆,也可以直接用于列表,功能一样。

五、使用heapq合并两个有序列表

array_a = [10, 7, 15, 8]
array_b = [17, 3, 8, 20, 13]
array_merge = heapq.merge(sorted(array_a), sorted(array_b))
print("merge result:", list(array_merge))

运行结果:

merge result: [3, 7, 8, 8, 10, 13, 15, 17, 20]

merge(list1, list2),将两个有序的列表合并成一个新的有序列表,返回结果是一个迭代器。这个方法可以用于归并排序。

六、heapq替换数据的方法

array_c = [10, 7, 15, 8]
heapq.heapify(array_c)
print("before:", array_c)
# 先push再pop
item = heapq.heappushpop(array_c, 5)
print("after: ", array_c)
print(item)

array_d = [10, 7, 15, 8]
heapq.heapify(array_d)
print("before:", array_d)
# 先pop再push
item = heapq.heapreplace(array_d, 5)
print("after: ", array_d)
print(item)

运行结果:

before: [7, 8, 15, 10]
after:  [7, 8, 15, 10]
5
before: [7, 8, 15, 10]
after:  [5, 8, 15, 10]
7

heappushpop(heap, num),先将num添加到堆中,然后将堆顶的数据出堆。

heapreplace(heap, num),先将堆顶的数据出堆,然后将num添加到堆中。

两个方法都是即入堆又出堆,只是顺序不一样,可以用于替换堆中的数据。具体的区别可以看代码中的例子。

 

 

### Python 中 `heapq` 模块的使用方法 #### 基本概念 `heapq` 是 Python 标准中的一个模块,用于实现堆队列算法(也称为优先队列)。该数据结构支持高效的插入和弹出最小/最大元素操作,在多种应用场景下表现出色[^1]。 #### 创建与初始化堆 可以通过向空列表添加元素再调用 `heappush()` 方法逐步建立一个小根堆;也可以先准备好待处理的数据集,之后利用 `heapify()` 函数一次性完成建堆过程。下面给出具体实例: ```python import heapq # 方式一:逐个加入元素形成堆 min_heap = [] elements_to_add = [5, 3, 7, 1] for elem in elements_to_add: heapq.heappush(min_heap, elem) print("Min Heap after pushing:", min_heap) # 方式二:直接基于现有列表构建堆 another_list = [9, 6, 0, 8] heapq.heapify(another_list) print("Heapified list:", another_list) ``` #### 访问堆顶元素 要获取当前堆内的最小值而不移除它,则可以直接访问第一个索引位置处的内容。对于小根堆而言,这即是整个集合里的最小项。 ```python if min_heap: smallest_element = min_heap[0] print(f"The smallest element is {smallest_element}.") else: print("The heap is empty.") ``` #### 弹出堆顶元素 当需要取出并返回最小值时,应当采用 `heappop()` 来执行此动作。注意每次 pop 后都会自动调整剩余部分维持原有性质不变。 ```python while min_heap: removed_item = heapq.heappop(min_heap) print(f"Popped item: {removed_item}") ``` #### 查找 N 大或 N 小元素 除了常规增删查改外,`heapq` 还特别适合用来求解序列中排名靠前若干位的对象。借助于内置函数 `nlargest(n, iterable)` 和 `nsmallest(n, iterable)` 可迅速定位目标子集成员。 ```python sample_data = [4, 1, 7, 3, 8, 5] top_three_largest = heapq.nlargest(3, sample_data) bottom_two_smallest = heapq.nsmallest(2, sample_data) print(f"Top three largest numbers are {top_three_largest}.") print(f"Bottom two smallest numbers are {bottom_two_smallest}.") ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小斌哥ge

非常感谢,祝你一切顺利。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值