MAR
文章平均质量分 92
通街市密人有
https://github.com/LinY-ct
展开
-
OSCNet: Orientation-Shared Convolutional Network for CT Metal Artifact Learning
X射线计算机断层扫描(CT)已广泛应用于疾病诊断和图像引导干预的临床应用。然而,患者体内的金属总是在恢复的CT图像中造成不利的伪影。尽管在金属伪影还原(MAR)任务中获得了有希望的重建结果,但大多数现有的基于深度学习的方法都存在一些局限性。关键的问题是,这些方法中的大多数都没有充分利用这个特定MAR任务背后的重要原创 2023-11-14 18:00:48 · 421 阅读 · 0 评论 -
VISION TRANSFORMER WITH PROGRESSIVE TOKENIZATION FOR CT METAL ARTIFACT REDUCTION
高质量的计算机断层扫描(CT)在临床诊断中起着至关重要的作用,但金属植入物的存在会在CT图像上引入严重的金属伪影,阻碍医生的决策。以往许多金属伪影还原(MAR)的研究都是基于卷积神经网络(CNN)。最近,Transformer在计算机视觉方面展示了惊人的潜力。此外,基于Transformer的方法也被用于CT图像去噪。然而,这些方法在MAR中很少被探索。为了填补这一空白,我们提出了,据我们所知,第一个基于Transformer的MAR架构。我们的方法依赖于一个标准的视觉Transformer(ViT)。原创 2023-10-09 20:45:09 · 319 阅读 · 0 评论