BP
文章平均质量分 95
通街市密人有
https://github.com/LinY-ct
展开
-
Deep Filtered Back Projection for CT Reconstruction
滤波反投影(FBP)是一种经典的计算机断层扫描(CT)重建解析算法,具有很高的计算效率。然而,用FBP重建的图像往往存在过多的噪声和伪影。原始的FBP算法使用窗函数平滑信号,并使用线性插值来估计非采样位置的投影值。在本研究中,我们提出了一个名为DeepFBP的新框架,其中通过神经网络学习优化的滤波器和优化的非线性插值算子。具体来说,学习到的滤波器可以看作是优化后的窗函数与斜坡滤波器的乘积,学习到的插值可以看作是通过非线性组合来优化利用附近位置投影信息的一种方法。原创 2024-07-06 17:58:37 · 537 阅读 · 0 评论 -
FOURIER NEURAL OPERATOR FOR PARAMETRIC PARTIAL DIFFERENTIAL EQUATIONS
神经网络的经典发展主要集中在有限维欧几里得空间之间的学习映射。最近,这被推广到学习函数空间之间映射的神经算子。对于偏微分方程,神经算子直接学习从任意函数参数依赖到解的映射。因此,他们学习了整个偏微分方程家族,而不像经典方法只解一个方程实例。在这项工作中,我们通过直接在傅里叶空间中参数化积分核来制定一个新的神经算子,允许一个表达和高效的架构。我们对Burgers方程、Darcy流和Navier-Stokes方程进行了实验。傅里叶神经算子是第一个成功模拟zero-shot超分辨率湍流的基于ML的方法。原创 2024-05-22 17:29:19 · 1032 阅读 · 0 评论 -
Fast deep learning based reconstruction for limited angle tomography
计算机断层扫描的一个主要挑战是从不完整的数据中重建物体。对于这些问题,一个日益流行的解决方案是将深度学习模型整合到重建算法中。本文介绍了一种将傅里叶神经算子(FNO)集成到滤波后反投影(FBP)重建方法中的新方法,得到了FNO反投影(FNO-BP)网络。我们采用矩条件进行正弦图外推,以帮助模型从有限的数据中减轻伪影。值得注意的是,我们的深度学习架构保持了与经典滤波后投影(FBP)重建相当的运行时,确保了推理和训练期间的快速性能。原创 2024-05-20 19:00:56 · 927 阅读 · 0 评论