MLP
文章平均质量分 95
通街市密人有
https://github.com/LinY-ct
展开
-
Revitalizing MLP’s Ability to Efficiently Extract Long-Distance Dependencies for Medical Image
基于深度学习网络的医学图像分割方法主要分为CNN和Transformer。然而,CNN很难捕获长距离依赖关系,而Transformer的计算复杂度高,局部特征学习能力差。为了有效地提取和融合局部特征和远程依赖关系,本文提出了一种结合MLP的CNN模型Rolling-Unet。具体来说,我们提出了核心R-MLP模块,该模块负责学习整个图像在单一方向上的长距离依赖关系。通过对不同方向的R-MLP模块进行控制和组合,形成OR-MLP和DOR-MLP模块,以捕获多方向的远程依赖关系。原创 2024-05-08 18:24:46 · 1138 阅读 · 0 评论 -
KAN: Kolmogorov–Arnold Networks
论文链接:https://arxiv.org/abs/2404.19756代码链接:https://github.com/KindXiaoming/pyKAN项目链接:https://kindxiaoming.github.io/pyKAN/intro.html受Kolmogorov-Arnold表示定理的启发,我们提出Kolmogorov-Arnold网络(KAN)作为多层感知器(MLP)的有前途的替代品。MLP在节点(“神经元”)上有固定的激活函数,而KAN在边缘(“权重”)上有可学习的激活函数。KAN原创 2024-05-07 19:17:17 · 3887 阅读 · 0 评论 -
KAN:Kolmogorov–Arnold Networks
受Kolmogorov-Arnold表示定理的启发,我们提出Kolmogorov-Arnold网络(KAN)作为多层感知器(MLP)的有前途的替代品。MLP在节点(“神经元”)上有固定的激活函数,而KAN在边缘(“权重”)上有可学习的激活函数。kan根本没有线性权重——每个权重参数都被参数化为样条的单变量函数所取代。我们表明,这个看似简单的改变使得KAN在准确性和可解释性方面优于MLP。就准确性而言,在数据拟合和PDE求解方面,更小的KAN可以达到与更大的MLP相当或更好的准确性。原创 2024-05-06 21:05:43 · 3316 阅读 · 0 评论