torch中的mul()、matmul()和mm()

文章介绍了PyTorch中三个用于张量运算的函数:mul()执行元素级乘法,matmul()进行矩阵乘法(点积),而mm()同样是矩阵乘法但要求输入为二维张量。mul函数需确保输入张量尺寸相同,matmul和mm则是行与列的对应乘积并相加。通过示例代码展示了各函数的使用方法和计算结果。
部署运行你感兴趣的模型镜像

1.mul()

源码中是这样的。可以看到主要有两个参数是必要的,分别是两个tensor向量。

def mul(input: Union[Tensor, Number], other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...

用例子测试一下:

import torch

a = torch.tensor([1, 3])
b = torch.tensor([2, 5])
print(torch.mul(a, b))

输出的结果为
tensor([ 2, 15])

可以发现,mul通过对应位置相乘,得到的值填入tensor向量中,这样需要保证输入的两个向量维度和大小一直

2.matmul()

源码如下,函数参数为两个tensor向量

def matmul(input: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...

测试例子:

import torch

a = torch.tensor([1, 3])
b = torch.tensor([2, 5])
print(torch.matmul(a, b))

得出的结果为:tensor(17)

可以看出,matmul是点积乘法,通过行乘列,相加的形式。
假设a=[a1a2]a=\begin{bmatrix} a_1&a_2 \end{bmatrix}a=[a1a2]b=[b11b12b13b21b22b23]b=\begin{bmatrix} b_{11} & b_{12}&b_{13}\\ b{21} & b_{22}&b_{23} \end{bmatrix}b=[b11b21b12b22b13b23]
那么,有
matmul(a,b)=[a1∗b11+a2∗b21a1∗b12+a2∗b22a1∗b13+a2∗b23] matmul(a,b)=\begin{bmatrix} a_1*b_{11}+a_2*b_{21} & a_1*b_{12}+a_2*b_{22}&a_1*b_{13}+a_2*b_{23} \end{bmatrix} matmul(a,b)=[a1b11+a2b21a1b12+a2b22a1b13+a2b23]

3.mm()

源码如下,输入的参数要求是矩阵tensor向量,要求满足二维tensormm()的本质也是点乘

def mm(input: Tensor, mat2: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...

这里也给出一个例子:

import torch

a = torch.tensor([1, 3])
b = torch.tensor([2, 5])

a = torch.unsqueeze(a, dim=0)
b = torch.unsqueeze(b, dim=0).T
print(a)
print(b)
a = torch.mm(a, b)
print(a)

输出的结果为:

tensor([[1, 3]])
tensor([[2],
        [5]])
tensor([[17]])

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

<think>好的,用户现在想了解PyTorchtorch.mul函数的用法或者与之相关的代码问题。我需要先回顾一下这个函数的基本定义常见应用场景。首先,torch.mul用于两个张量的逐元素相乘。它支持广播机制,这点很重要,用户可能在处理不同形状张量时遇到问题。比如,当两个张量形状不一致但满足广播条件时,结果会自动扩展。需要强调形状匹配的重要性,避免形状错误,这在引用[1][3]中都有提到。接下来,用户可能需要具体的例子来理解如何使用这个函数。我应该举几个不同情况的例子,比如相同形状的张量相乘、标量与张量相乘,以及广播的情况。同时,代码示例要清晰,最好使用用户提供的引用中的代码风格,比如引用[3]中的张量定义方式。 然后,常见问题部分需要涵盖用户可能遇到的错误,比如形状不匹配、数据类型不一致,以及是否需要使用in-place操作。例如,引用[1]提到形状错误是深度学习中常见的问题之一,这里可以引用说明。另外,数据类型的问题在引用[2]的输出中显示不同dtype的张量,可能需要转换数据类型才能相乘,这也是需要注意的点。 性能优化方面,引用[1]提到torch.matmul比手动计算更快,但torch.mul作为逐元素乘法,可能有更高效的方法,比如使用运算符*代替,或者利用广播机制减少显存占用。这里可以建议用户尽量使用内置函数,而不是手动循环,这点在引用[1]的示例中也有体现。 最后,相关问题需要围绕用户可能进一步的问题展开,比如与其他乘法函数的区别、广播机制的具体规则、梯度计算的问题,以及性能优化技巧。这些问题应该帮助用户深入理解torch.mul的使用场景潜在问题。 需要确保回答中正确使用LaTeX格式,比如张量形状用$shape=(2,3)$,数学表达式用$符号包裹。同时,引用要自然地插入到相关内容后面,比如在讨论形状错误时引用[1],在数据类型问题时引用[2]。总结一下,回答的结构应该是:定义、基本用法、示例、常见问题、性能建议相关问题。每个部分都要简洁明了,结合用户提供的引用内容,确保信息准确可靠。</think>### `torch.mul`函数详解与使用示例 #### 1. **函数定义与核心特性** `torch.mul`是PyTorch中用于**逐元素乘法**的函数,其数学表示为: $$ \text{output} = x \odot y $$ 其中$x$$y$为输入张量,支持以下特性: - **广播机制**:当输入张量形状不同但满足广播规则时,自动扩展至相同形状[^3] - **数据类型兼容**:要求输入张量数据类型一致或可隐式转换[^2] - **逐元素操作**:不改变张量维度,仅对应位置相乘 #### 2. **基本用法与代码示例** ```python import torch # 示例1:相同形状张量相乘 x = torch.tensor([[1, 2], [3, 4]], dtype=torch.float32) y = torch.tensor([[0.5, 2], [1, 0.25]], dtype=torch.float32) result = torch.mul(x, y) # 等价于 x * y # 输出:tensor([[0.5000, 4.0000], [3.0000, 1.0000]]) # 示例2:标量与张量相乘 scalar = 3 result = torch.mul(x, scalar) # 等价于 x * 3 # 输出:tensor([[ 3., 6.], [ 9., 12.]]) # 示例3:广播机制应用 a = torch.randn(2, 3) # $shape=(2,3)$ b = torch.randn(3) # $shape=(3)$ result = torch.mul(a, b) # b被广播为$shape=(2,3)$ ``` #### 3. **常见问题与解决方案** | **问题类型** | **解决方法** | |-----------------------|-----------------------------------------------------------------------------| | 形状不匹配错误 | 检查输入张量是否满足广播规则,必要时手动调整形状[^1][^3] | | 数据类型不一致 | 使用`.to()`方法统一数据类型,如`x = x.to(torch.float32)`[^2] | | 梯度计算异常 | 确保操作在计算图中,避免对`requires_grad=False`的张量进行乘法操作 | | 显存占用过高 | 使用`torch.no_grad()`上下文管理器或`.detach()`方法减少梯度追踪[^5] | #### 4. **性能优化建议** - **优先使用运算符**:`x * y`比`torch.mul(x, y)`更简洁且性能相同 - **避免不必要拷贝**:对于大张量操作,使用`out`参数指定输出容器 - **广播优化**:利用广播机制减少显存占用,例如: ```python # 高效方式:利用广播 weights = torch.randn(3) # $shape=(3)$ features = torch.randn(1000, 3) # $shape=(1000,3)$ weighted_features = weights * features # 自动广播 ``` #### 5. **与相关函数的区别** | **函数** | **行为** | **典型应用场景** | |--------------------|-----------------------------------|-------------------------------| | `torch.mul` | 逐元素乘法 | 权重调整、掩码应用 | | `torch.matmul` | 矩阵乘法 | 全连接层计算[^1] | | `torch.mm` | 二维矩阵乘法 | 传统线性代数运算 | --- ###
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刘先生的u写倒了

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值