读书笔记
路漫漫其修远兮,吾将上下而求索
AI study
只有充实的每一天才能配得上完美的自己!
展开
-
【周志华机器学习】线性模型02
线性模型 在机器学习的术语中,当预测值为连续值时,称为“回归问题”,离散值时为“分类问题”。 最小二乘法: 3.1线性回归 对于连续值的属性,一般都可以被学习器所用,有时会根据具体的情形作相应的预处理, 例如:归一化等; 对于离散值的属性, 若属性值之间存在“序关系”,则可以将其转化为连续值,例如:身高属性分为“高”“中等”“矮”,可转化为数值:{1, 0.5, 0}。 若属性值之间不存在...原创 2019-12-16 20:39:39 · 198 阅读 · 0 评论 -
【周志华机器学习】常见名词与性能度量01
一、常见名词 维灾难 泛化能力:机器学习出来的模型适用于新样本的能力,泛化能力,从特殊到一般 离散型:分类 连续性:回归 监督学习:有标记信息的学习任务-分类和回归 无监督学习:没有标记信息的学习任务-聚类和关联 训练误差:经验误差 测试误差 泛化误差:学习器在新的样本上的误差 过拟合:学习能力太强,训练误差比较小,测试误差比较大 欠拟合:学习能力太差,训练误差和测试误差都比较大 二、评估方法...原创 2019-12-04 19:39:46 · 458 阅读 · 0 评论 -
【百面机器学习】特征工程01
1特征归一化 主要分为两种数据类型:结构化数据(文本数据),非结构化数据(音视频数据即二进制数据) 1.1为什么需要对数值类型的特征做归一化? 为了将所有的特征都统一到一个大致相同的数值区间内。 在学习速率相同的情况下,x 1 的更新速度会大于x 2 ,需要较多的迭代才能找到最优解。如果将x 1 和x 2 归一化到相同的数值区间后,优化目标的等值图会变成图1.1(b)中的圆形,x 1 和x...原创 2019-12-25 14:00:29 · 165 阅读 · 0 评论