对用户消费行为进行分析
项目背景
分析方法
电商常用分析方法
漏斗流失分析
数据预处理
- 将数据以字符串的格式读取
- 统计缺失值
- 将字符串的日期时间to_datatime,astype(int)
- 按照时间进行排序
用户行为分析(构建模型)
- 通过时间进行分组统计次数,得到每天的访问量和每天用户的访问量groupby()
- 计算两个变量之间的相关系数corr(spearman或者pearson)
- 统计小时访问量,也是之前使用过的方法(和每天访问量一样)
- 不同行为类型用户访问量的分析。使用pivot_table(columns=‘behavior_type’,index="hour",data=data_user,values="user_id",aggfunc=np.size)
- 1-点击;2-收藏;3-加购物车;4-购买
- 购买的用户平均浏览次数,已经购买的用户差不多点击多少次才会进行购买,点击超过多少(10)次的用户重点观察
- 统计不同用户人均消费总次数。
- 统计每天人均消费次数。大部分人每天都在1-2次之间
计算活跃用户数:每天有访问行为的用户数
- 对时间进行分组,每天具有访问行为的用户数除以总用户数
- 购买用户每天购买次数
复购率
- 有复购行为的用户数除以有购买行为的用户总数
间隔次数消费分布
- 每个用户每间隔多长时间消费一次,当前购买时间减去上一次购买时间
漏斗流失分析
- 不同行为的浏览次数
- 浏览量-》点击量 流失率5.7%
- 点击量-》加购物车 流失率97%
- 加购物车-》收藏 流失率29%
- 收藏量-》购买量 流失率50%
- 通过流失率的计算和分析重视每个环节极可能发生的原因和情况。
用户价值分析-使用RFM分析
- 计算每个用户最新购买时间-计算最新日期和参考日期的间隔
- 每个用户消费频次
- 对每种类型的用户进行分层,得到哪些是需要重点关注的用户,哪些是需要培养的用户,针对不同的用户采取不同的营销策略
- 得出结论