Pytorch 学习第【7】天

1. Pytorch 学习

今天主要学习Pytorch的Loss Functions、反向传播、优化器optim和一个完整的神经网络的例子等的内容【PS:注意结合前边内容。】
Pytorch 学习第【1】天
Pytorch 学习第【2】天
Pytorch 学习第【3】天
Pytorch 学习第【4】天
Pytorch 学习第【5】天
Pytorch 学习第【6】天

2.损失函数 Loss Functions

2.1 torch.nn.L1Loss

创建一个标准,测量输入x和目标y中每个元素之间的平均绝对误差(MAE)。
参数:

torch.nn.L1Loss(size_average=None, reduce=None, reduction='mean')

解析:
size_average (bool, optional) - 弃用(见减少)。默认情况下,损失是对批次中的每个损失元素进行平均的。注意,对于某些损失,每个样本有多个元素。如果字段size_average被设置为False,则损失是对每个minibatch进行求和。当reduce为False时被忽略。默认值。真

reduce (bool, optional) - 弃用(见reduction)。默认情况下,根据size_average对每个minibatch的观测值进行平均或求和。当reduce为False时,返回每批元素的损失,而忽略size_average。默认情况下。真‘
reduction (string, optional) - 指定要应用于输出的缩减。‘none’ | ‘mean’ | ‘sum’。‘none’:不应用任何减少,‘mean’:输出的总和将除以输出中的元素数,‘sum’:输出将被加总。注意:size_average和reduce正在被废

形状:
输入:(),其中∗表示任何数量的尺寸。

目标:(*),与输入的形状相同。

输出:标量。如果减少是 “无”,则(*),与输入相同的形状。

计算公式:
在这里插入图片描述
图例:
在这里插入图片描述

【PS:这里相减是包含绝对值。】

2.1.1 python代码例子

2.1.1.1 上边的例子复现代码
import torch
from torch import nn

loss = nn.L1Loss(reduction='sum')

input = torch.arange(1, 26, dtype=torch.float).reshape(5, 5)
target = torch.arange(1, 26, dtype=torch.float).reshape(5, 5)
output = loss(input, target)
print(input)
print(target)
print(output)

输出结果:

tensor([[ 1.,  2.,  3.,  4.,  5.],
        [ 6.,  7.,  8.,  9., 10.],
        [11., 12., 13., 14., 15.],
        [16., 17., 18., 19., 20.],
        [21., 22., 23., 24., 25.]])
tensor([[ 1.,  2.,  3.,  4.,  5.],
        [ 6.,  7.,  8.,  9., 10.],
        [11., 12., 13., 14., 15.],
        [16., 17., 18., 19., 20.],
        [21., 22., 23., 24., 25.]])
tensor(0.)

2.2 torch.nn.MSELoss

创建一个标准,测量输入x和目标y中每个元素之间的平均平方误差(平方L2准则)。
参数:

torch.nn.MSELoss(size_average=None, reduce=None, reduction='mean')

解析:
size_average (bool, optional) - 弃用(见减少)。默认情况下,损失是对批次中的每个损失元素进行平均的。注意,对于某些损失,每个样本有多个元素。如果字段size_average被设置为False,则损失是对每个minibatch进行求和。当reduce为False时被忽略。默认值。真

reduce (bool, optional) - 弃用(见reduction)。默认情况下,根据size_average对每个minibatch的观测值进行平均或求和。当reduce为False时,返回每批元素的损失,而忽略size_average。默认情况下。真

reduction (string, optional) - 指定要应用于输出的缩减。‘none’ | ‘mean’ | ‘sum’。‘none’:不应用任何减少,‘mean’:输出的总和将除以输出中的元素数,‘sum’:输出将被加总。注意:size_average和reduce正在被废弃,在此期间,指定这两个args中的任何一个都会覆盖reduction。默认值:‘平均’。

形状:
输入:(∗),其中*∗表示任何数目的维度。
目标:(∗),与输入的形状相同。

计算公式:
在这里插入图片描述
图例:
在这里插入图片描述

2.2.1 python代码例子

2.2.1.1 上边的例子复现代码
import torch
from torch import nn

loss = nn.MSELoss(reduction='sum')
# loss = nn.MSELoss()

input = torch.arange(1, 26, dtype=torch.float).reshape(5, 5)
target = torch.arange(3, 28, dtype=torch.float).reshape(5, 5)
output = loss(input, target)
print(input)
print(target)
print(output)

输出结果:

tensor([[ 1.,  2.,  3.,  4.,  5.],
        [ 6.,  7.,  8.,  9., 10.],
        [11., 12., 13., 14., 15.],
        [16., 17., 18., 19., 20.],
        [21., 22., 23., 24., 25.]])
tensor([[ 3.,  4.,  5.,  6.,  7.],
        [ 8.,  9., 10., 11., 12.],
        [13., 14., 15., 16., 17.],
        [18., 19., 20., 21., 22.],
        [23., 24., 25., 26., 27.]])
tensor(100.)

2.3 torch.nn.CrossEntropyLoss

这个标准计算了输入和目标之间的交叉熵损失。
【PS:这里扩展介绍下信息熵,交叉熵和相对熵】

2.3.1 信息熵,交叉熵和相对熵

(1)信息熵:
信息熵是由信息论之父香农提出来的,它用于随机变量的不确定性度量,先上信息熵的公式。
在这里插入图片描述
举个例子:
想要买台电脑。但是不确定要买什么牌子。以下有两种情况:
情况一:

序列事件概率信息量 C
A戴尔0.25-log(p(A)) = 1.38629436112
B联想0.25-log(p(B)) = 1.38629436112
C华硕0.25-log(p©) = 1.38629436112
D苹果0.25-log(p(D)) = 1.38629436112

此时你的大脑混杂程度:(信息熵)
-[ p(A)*log(p(A)) + p(B)*log(p(B)) + p©*log(p©) + p(D)*log(p(D)) ] =1.38629436112

情况二:

序列事件概率信息量 C
A戴尔0.1-log(p(A))=2.302585092994
B联想0.2-log(p(B))=1.609437912434
C华硕0.1-log(p©)=2.302585092994
D苹果0.6-log(p(D))=0.510825623766

此时你的大脑混杂程度:(信息熵)
-[ p(A)*log(p(A)) + p(B)*log(p(B)) + p©*log(p©) + p(D)*log(p(D)) ] =1.088899975345

【PS:信息熵是信息论中用于度量信息量的一个概念。一个系统越是有序,信息熵就越低;反之,一个系统越是混乱,信息熵就越高】
(2)交叉熵:
这里可以引申出交叉熵的理解,现在有两个分布,真实分布p和非真实分布q,我们的样本来自真实分布p.
(1)按照真实分布p来编码样本所需的编码长度的期望为
在这里插入图片描述
这就是上面说的信息熵H( p )
(2)按照不真实分布q来编码样本所需的编码长度的期望为
在这里插入图片描述
这就是所谓的交叉熵H( p,q )
(3)这里引申出KL散度D(p||q) = H(p,q) - H( p) =
在这里插入图片描述
也叫做相对熵,它表示两个分布的差异,差异越大,相对熵越大。
对于还是不太懂的可以参考:

2.3.2 参数解析

参数:

torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=- 100, reduce=None, reduction='mean', label_smoothing=0.0)

解析:
weight (Tensor, optional) - 给予每个类别的手动重新缩放权重。如果给定,必须是一个大小为C的张量。

size_average (bool, optional) - 弃用(见减少)。默认情况下,损失是对批次中的每个损失元素进行平均的。注意,对于某些损失,每个样本有多个元素。如果字段size_average被设置为False,则损失是对每个minibatch进行求和。当reduce为False时被忽略。默认值。真

ignore_index (int, optional) - 指定一个被忽略的目标值,不对输入梯度产生影响。当size_average为True时,损失是对非忽略的目标值进行平均的。注意,ignore_index只在目标值包含类指数时适用。

reduce (bool, optional) - 弃用(见reduction)。默认情况下,根据size_average对每个minibatch的观测值进行平均或求和。当reduce为False时,返回每批元素的损失,而忽略size_average。默认情况下。真

reduction (string, optional) - 指定要应用于输出的缩减。‘none’ | ‘mean’ | ‘sum’。‘none’:不应用减法,‘mean’:取输出的加权平均值,‘sum’:输出将被求和。注意:size_average和reduce正在被废弃,在此期间,指定这两个参数中的任何一个都会覆盖reduction。默认值:‘平均’。

label_smoothing (float, optional) - 一个在[0.0, 1.0]中的浮点数。指定计算损失时的平滑量,其中0.0意味着没有平滑。目标成为原始地面真实和均匀分布的混合物,如《重新思考计算机视觉的初始架构》中所述。默认值:0.00.0。
形状:
在这里插入图片描述
【PS:到这里有看不懂了。其实问题不大这可能对交叉熵不太清楚。后边举个例子计算下,应该能更好的理解。】
在这里插入图片描述

2.3.3 python代码例子

2.3.3.1 上边的例子复现代码
import torch
from torch import nn
x =torch.tensor([0.1,0.2,0.4]).reshape((1,3))
y =torch.tensor([1])
loss_cross=nn.CrossEntropyLoss()
result = loss_cross(x,y)
print(result)

输出结果:

tensor(1.1398)

进程已结束,退出代码0

3. 反向传播

前向传播通过训练数据和权重参数计算输出结果;反向传播通过导数链式法则计算损失函数对各参数的梯度,并根据梯度进行参数的更新,这一点是重点,会在后文详叙。可以参考
在这里插入图片描述
【PS:简单来说我们再使用损失函数的时候,我们可以调用反向传播。反向传播就可求出需要调节参数,或者参数对应的梯度。然后有了梯度我们就可以通过优化器对参数进行调整。从而达到我整体误差降低的目的。】

4. 优化器torch.optim

torch.optim是一个实现各种优化算法的包。大多数常用的方法已经被支持,而且接口足够通用,所以将来也可以很容易地集成更复杂的方法。
如何使用优化器:
为了使用torch.opt,你必须构造一个优化器对象,它将保持当前状态并根据计算的梯度更新参数。
(1)构建一个优化器
例如:

optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
optimizer = optim.Adam([var1, var2], lr=0.0001)

【PS:是什么优化器这里也不需要知道。知道构建一个优化器并不难。】

(2)参数的选项
优化器也支持指定每个参数的选项。要做到这一点,与其传递Variable s的迭代,不如传递dict s的迭代。每一个迭代都将定义一个单独的参数组,并且应该包含一个params键,包含属于它的参数列表。其他键应该与优化器接受的关键字参数相匹配,并将被用作该组的优化选项。
注意:
你仍然可以把选项作为关键字参数传递。它们将被用作默认值,在没有覆盖它们的组中使用。当你只想改变一个选项,而在参数组之间保持所有其他选项的一致性时,这很有用。
例如:
指定每层的学习率时。

optim.SGD([
                {'params': model.base.parameters()},
                {'params': model.classifier.parameters(), 'lr': 1e-3}
            ], lr=1e-2, momentum=0.9)

这意味着model.base的参数将使用默认的1e-2的学习率,model.classifier的参数将使用1e-3的学习率,而所有参数将使用0.9的动量。
(3)采取优化步骤
所有的优化器都实现了一个step()方法,用来更新参数。它可以以两种方式使用。
1、optimizer.step()
这是大多数优化器所支持的简化版本。一旦梯度被计算出来,就可以使用例如backward()来调用这个函数。
例子:

for input, target in dataset:
    optimizer.zero_grad()
    output = model(input)
    loss = loss_fn(output, target)
    loss.backward()
    optimizer.step()

2、optimizer.step(closure)
一些优化算法,如共轭梯度和LBFGS需要多次重新评估函数,所以你必须传入一个闭包,让他们重新计算你的模型。这个闭包应该清除梯度,计算损失,并返回它。
例如:

for input, target in dataset:
    def closure():
        optimizer.zero_grad()
        output = model(input)
        loss = loss_fn(output, target)
        loss.backward()
        return loss
    optimizer.step(closure)

【PS:以上来自官方文档的解释】

5. 完整模型例子

例子是CIFAR的分类,模型如下:
在这里插入图片描述
(1)model.py代码:

# 准备数据集:
import torch
from torch import nn

# 搭建神经网络
class example(nn.Module):
    def __init__(self):
        super(example, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4,64),
            nn.Linear(64,10)
        )

    def forward(self, x):
        x = self.model(x)
        return x

# 测试
if __name__ == '__main__':
    jiuchong = example()
    input = torch.ones((64,3,32,32))
    output = jiuchong(input)
    print(output.shape)

(2) main.py代码:

import torch.cuda
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from model import *


# 准备数据集合
device =torch.device("cuda" if torch.cuda.is_available() else "cpu")

train_data = torchvision.datasets.CIFAR10(root='./dataset', train=True, transform=torchvision.transforms.ToTensor(),
                                          download=True)

test_data = torchvision.datasets.CIFAR10(root='./dataset', train=False, transform=torchvision.transforms.ToTensor(),
                                         download=True)

# 保存训练集和测试集的长度
train_data_size = len(train_data)
test_data_size = len(test_data)
# print("训练数据集的长度为:{}".format(train_data_size))
# print("测试数据集的长度为:{}".format(test_data_size))

# 加载数据集
train_dataloader = DataLoader(dataset=train_data, batch_size=64)
test_dataloader = DataLoader(dataset=test_data, batch_size=64)

#模型实例化
jiuchong = example()
jiuchong = jiuchong.to(device)

#损失函数
loss_fn = nn.CrossEntropyLoss()
loss_fn=loss_fn.to(device)

#优化器
learning_rate = 0.01
optimizer = torch.optim.SGD(jiuchong.parameters(),lr = learning_rate)

# 设置训练网络的一些参数
total_train_step = 0
total_test_step = 0
epoch = 20

# tensorboard的运用
writer = SummaryWriter("./logs_train")

for i in range(epoch):
    print("-------第{}轮训练开始------".format(i+1))

    jiuchong.train()
    for data in train_dataloader:
        imgs ,targets =data
        imgs = imgs.to(device)      #使用GPU
        targets =targets.to(device) #使用GPU
        outputs =jiuchong(imgs)
        loss = loss_fn(outputs,targets)
        # 优化器优化模型
        optimizer.zero_grad()   # 梯度设置为0
        loss.backward()         # 反向传播
        optimizer.step()        # 采取优化步骤

        total_train_step +=1
        # tensorboard train_loss 画图
        if total_train_step % 100 == 0:
            print("训练次数:{},loss:{}".format(total_train_step,loss.item()))
            writer.add_scalar("train_loss",loss.item(),total_train_step)

    # 训练集
    total_test_loss = 0
    total_accuracy = 0
    jiuchong.eval()
    with torch.no_grad():   #这里只是测试,不在梯度下降
        for data in test_dataloader:
            imgs, targets = data
            imgs = imgs.to(device)
            targets =targets.to(device)
            outputs = jiuchong(imgs)
            loss = loss_fn(outputs,targets)
            total_test_loss += loss
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy
    
    print("整体测试集熵的Loss:{}".format(total_test_loss))
    print("整体的测试集的正确率:{}".format(total_accuracy/test_data_size))
    # tensorboard test_loss 、test_accuracy画图
    writer.add_scalar("test_loss",total_test_loss,total_test_step)
    writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)
    total_test_step +=1
    # 保存模型
    # torch.save(jiuchong,"tudui_{}.pth".format(i))
writer.close()

输出结果:

-------20轮训练开始------
训练次数:14900,loss:0.5706865787506104
训练次数:15000,loss:0.8623301982879639
训练次数:15100,loss:0.7635148763656616
训练次数:15200,loss:0.9178880453109741
训练次数:15300,loss:0.7020710706710815
训练次数:15400,loss:0.9142396450042725
训练次数:15500,loss:0.9747730493545532
训练次数:15600,loss:0.8371116518974304
整体测试集熵的Loss:166.2091064453125
整体的测试集的正确率:0.6432999968528748

进程已结束,退出代码0

tensorboard:
在这里插入图片描述

本文作者:九重!
本文链接:https://blog.csdn.net/weixin_43798572/article/details/124667600
关于博主:评论和私信会在第一时间回复。或者直接私信我。
声援博主:如果您觉得文章对您有帮助,可以点击文章右下角【点赞】【收藏】一下。您的鼓励是博主的最大动力!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

九重!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值