目标检测数据可视化,分析anchor_ratio的设置问题

目标检测数据可视化,分析anchor_ratio的设置问题

import os
import json
import random
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
# % matplotlib
# inline

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['font.family'] = 'sans-serif'
plt.rcParams['figure.figsize'] = (10.0, 5.0)

# 这里打开你的训练集的标注,格式是COCO数据集的格式
with open('instances_train2017.json') as f:
    ann = json.load(f)

category_dic = dict([(i['id'], i['name']) for i in ann['categories']])
counts_label = dict([(i['name'], 0) for i in ann['categories']])

for i in ann['annotations']:
    counts_label[category_dic[i['category_id']]] += 1

box_w = []
box_h = []
box_wh = []
categorys_wh = [[] for j in range(204)]
for a in ann['annotations']:
    if a['category_id'] != 0:
        box_w.append(round(a['bbox'][2], 2))
        box_h.append(round(a['bbox'][3], 2))
        # 因为anchor_ratio是指H/W,这里就统计H/W
        hw = a['bbox'][3] / a['bbox'][2]
        if hw > 1:
            hw = round(hw, 0)
        else:
            hw = round(hw, 1)
        box_wh.append(hw)
        categorys_wh[a['category_id'] - 1].append(hw)

# 所有标签的长宽高比例
box_wh_unique = list(set(box_wh))
box_wh_unique.sort()
box_wh_count = [box_wh.count(i) for i in box_wh_unique]

# 绘图
wh_df = pd.DataFrame(box_wh_count, index=box_wh_unique, columns=['宽高比数量'])
wh_df.plot(kind='bar', color="#55aacc")
plt.show()

image-20211223093541269

得到图像你就可以大概选一些ratio了,选择出现比例比较多的ratio。在这里选的是[0.2,0.5,0.8,1.0,1.25,2.0,5.0]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值