题目
东东开车出去泡妞(在梦中),车内提供了 n 张CD唱片,已知东东开车的时间是 n 分钟,他该如何去选择唱片去消磨这无聊的时间呢
假设:
CD数量不超过20张
没有一张CD唱片超过 N 分钟
每张唱片只能听一次
唱片的播放长度为整数
N 也是整数
我们需要找到最能消磨时间的唱片数量,并按使用顺序输出答案(必须是听完唱片,不能有唱片没听完却到了下车时间的情况发生)
本题是 Special Judge
Input
多组输入
每行输入第一个数字N, 代表总时间,第二个数字 M 代表有 M 张唱片,后面紧跟 M 个数字,代表每张唱片的时长 例如样例一: N=5, M=3, 第一张唱片为 1 分钟, 第二张唱片 3 分钟, 第三张 4 分钟
所有数据均满足以下条件:
N≤10000
M≤20
Output
输出所有唱片的时长和总时长,具体输出格式见样例
Sample Input
5 3 1 3 4
10 4 9 8 4 2
20 4 10 5 7 4
90 8 10 23 1 2 3 4 5 7
45 8 4 10 44 43 12 9 8 2
Sample Output
1 4 sum:5
8 2 sum:10
10 5 4 sum:19
10 23 1 2 3 4 5 7 sum:55
4 10 12 9 8 2 sum:45
思路
0-1背包问题,本题不仅需要结果还需要过程。
f[i][j]表示“仅考虑将前 i 件物品放入到容量为 j 的背包中能获得的最大价值”。故得到答案后,根据f[][]可以得到路径。
对于第i个CD,若不选中该CD,则“仅考虑将前 i -1个CD放入到总时长为j的背包中能获得的最大价值”等于“仅考虑将 i 个CD放入到总时长为j的背包中能获得的最大价值”,即f[i][j]=f[i-1][j];若选中该CD,则两者不相等,即f[i][j]!=f[i-1][j]。故在得到f[][]后,可以遍历f[][n],根据f[i-1][n]和f[i][n]的关系来判断在得到答案的过程中有没有选中第i个CD。若f[i][n]!=f[i-1][n],意味着选中了第I个CD,将n更新为n-CD[I]。
代码
#include <cstdio>
#include <algorithm>
#include <string.h>
using namespace std;
int const maxn=20+5;
int const maxm=1e4+5;
int disk[maxn],f[maxm][maxm];
bool selected[maxn];
int main(){
int n,m;
while(scanf("%d%d",&n,&m)!=EOF){
memset(selected, false, sizeof(selected));
for(int i=1;i<=m;i++)
scanf("%d",&disk[i]);
for(int i=0;i<=n;i++)
f[0][i]=0;
for(int i=1;i<=m;i++){
for(int j=0;j<=n;j++){
f[i][j]=f[i-1][j];
if(j-disk[i]>=0)
f[i][j]=max(f[i][j],f[i-1][j-disk[i]]+disk[i]);
}
}
int time=n;
for(int i=m;i>0;i--){
if(f[i][time]!=f[i-1][time]){//选中第i个
selected[i]=true;
time-=disk[i];
}
}
for(int i=1;i<=m;i++)
if(selected[i])
printf("%d ",disk[i]);
printf("sum:%d\n",f[m][n]);
}
return 0;
}