E - 选做题11-1 东东与 ATM
题目
一家银行计划安装一台用于提取现金的机器。
机器能够按要求的现金量发送适当的账单。
机器使用正好N种不同的面额钞票,例如D_k,k = 1,2,…,N,并且对于每种面额D_k,机器都有n_k张钞票。
例如,
N = 3,
n_1 = 10,D_1 = 100,
n_2 = 4,D_2 = 50,
n_3 = 5,D_3 = 10
表示机器有10张面额为100的钞票、4张面额为50的钞票、5张面额为10的钞票。
东东在写一个 ATM 的程序,可根据具体金额请求机器交付现金。
注意,这个程序计算程序得出的最大现金少于或等于可以根据设备的可用票据供应有效交付的现金。
Input
程序输入来自标准输入。 输入中的每个数据集代表特定交易,其格式为:Cash N n1 D1 n2 D2 … nN DN其中0 <= Cash <= 100000是所请求的现金量,0 <= N <= 10是 纸币面额的数量,0 <= nk <= 1000是Dk面额的可用纸币的数量,1 <= Dk <= 1000,k = 1,N。 输入中的数字之间可以自由出现空格。 输入数据正确。
Output
对于每组数据,程序将在下一行中将结果打印到单独一行上的标准输出中。
Sample Input
735 3 4 125 6 5 3 350
633 4 500 30 6 100 1 5 0 1
735 0
0 3 10 100 10 50 10 10
Sample Output
735
630
0
0
Hint
第一个数据集指定一笔交易,其中请求的现金金额为 735。 机器包含3种面额的纸币:4张钞票 125、6张钞票 5和3张钞票 350。 机器可以交付所需现金的确切金额。
在第二种情况下,机器的票据供应不能满足所要求的确切现金数量。 可以交付的最大现金为 630。 请注意,在机器中组合钞票以匹配交付的现金有多种可能性。
在第三种情况下,机器是空的,没有现金交付。 在第四种情况下,请求的现金金额为 0,因此机器不交付现金。
解题思路
背包问题:cash是背包容量,dn是物品数量,dk是物品重量。
二进制拆分:对dn进行拆分,第一部分:小于或者等于dn的最大的2^n-1拆分,第二部分:剩下的数量(若第一部分是等于则没有这部分)。让可选择的组数尽可能的少,以增大效率。
二进制拆分
首先考虑最简单的情况,假定 Ci = 7 = (111)2
那么可以将 7 简单地拆成 (001)2, (010)2, (100)2 即十进制的 1×vi, 2×vi, 4×vi
通过对这 3 组进行选、不选的 0-1 背包的决策,就能涵盖所有 0~Ci 中的决策。从而转换成了 0-1 背包问题
7=(111)2 很好拆,但对于 13=(1101)2 这样的怎么处理?
简单地按照 (1000)2, (0100)2, (0001)2 这样处理?
显然不是!因为这样组合不能够凑出选 2=(0010)2 个这样的决策来
二进制拆分 13=(1101)2
我们首先拆出 7=(111)2 → 1=(001)2, 2=(010)2, 4=(100)2
这样已经可以表示 0~7 范围内的所有数
剩下的不能表示的数共有 13–7=6 个,所以我们再将 13 拆出一个 6 来
类似于偏移量的思路,通过控制 6 的选、不选,就能够表示所有的决策
也就是(0~7)+ 0×6 或(0~7)+ 1×6
因此 13=(1101)2 → 1=(001)2, 2=(010)2, 4=(100)2, 6=(110)2
完整代码
#include <iostream>
#include <cmath>
#include <string.h>
#include <algorithm>
using namespace std;
int cash,N;
int dn[20], dk[20];
int new_dn[10010], dp[100010];
int main()
{
while(cin>>cash>>N)
{
memset(dp, 0, sizeof(dp));
for(int i=1;i<=N;i++) cin>>dn[i]>>dk[i];
int cnt = 0;
for(int i=1;i<=N;i++)
{
int num = dn[i];
for(int j=1;j<=num;j<<=1)
{
cnt++;
new_dn[cnt] = j * dk[i];
num -= j;
}
if(num > 0)
{
cnt++;
new_dn[cnt] = num * dk[i];
}
}
for(int i=1;i<=cnt;i++)
for(int j=cash;j>=new_dn[i];j--)
dp[j] = max(dp[j], dp[j-new_dn[i]] + new_dn[i]);
cout<<dp[cash]<<endl;
}
return 0;
}
F - 选做题11-2 东东开车了
题目
东东开车出去泡妞(在梦中),车内提供了 n 张CD唱片,已知东东开车的时间是 n 分钟,他该如何去选择唱片去消磨这无聊的时间呢
假设:
CD数量不超过20张
没有一张CD唱片超过 N 分钟
每张唱片只能听一次
唱片的播放长度为整数
N 也是整数
我们需要找到最能消磨时间的唱片数量,并按使用顺序输出答案(必须是听完唱片,不能有唱片没听完却到了下车时间的情况发生)
Input
多组输入
每行输入第一个数字N, 代表总时间,第二个数字 M 代表有 M 张唱片,后面紧跟 M 个数字,代表每张唱片的时长 例如样例一: N=5, M=3, 第一张唱片为 1 分钟, 第二张唱片 3 分钟, 第三张 4 分钟
所有数据均满足以下条件:
N≤10000
M≤20
Output
输出所有唱片的时长和总时长,具体输出格式见样例
Sample Input
5 3 1 3 4
10 4 9 8 4 2
20 4 10 5 7 4
90 8 10 23 1 2 3 4 5 7
45 8 4 10 44 43 12 9 8 2
Sample Output
1 4 sum:5
8 2 sum:10
10 5 4 sum:19
10 23 1 2 3 4 5 7 sum:55
4 10 12 9 8 2 sum:45
解题思路
这也是一个基本的背包问题,但是加了一个回溯输出过程;
回溯输出过程:如果dp[x][y] = dp[x-1][y],说明没有选择第x个物品,回溯x-1, y;
如果dp[x][y] = dp[x-1][y-w[i]] + cd[i],说明选择了第x件物品,回溯x-1, y-w[i];
直到x和y有一方为0返回。
完整代码
#include <iostream>
#include <string.h>
#include <algorithm>
using namespace std;
int n, m;
int cd[25], dp[25][10010];
void path(int x,int y)
{
if(x == 0 || y == 0) return;
if(dp[x][y] == dp[x-1][y]) path(x-1, y);
else if(dp[x][y] == dp[x-1][y-cd[x]] + cd[x])
{
path(x-1, y-cd[x]);
cout<<cd[x]<<' ';
}
}
int main()
{
while(cin>>n>>m)
{
memset(dp, 0, sizeof(dp));
for (int i=1;i<=m;i++) cin>>cd[i];
for (int i=1;i<=m;i++)
for (int j=0; j<=n;j++)
{
if(j >= cd[i]) dp[i][j] = max(dp[i-1][j], dp[i-1][j-cd[i]] + cd[i]);
else dp[i][j] = dp[i-1][j];
}
path(m, n);
cout<<"sum:"<<dp[m][n]<<endl;;
}
return 0;
}