C++树状数组模板题 敌兵布阵解题报告

题目描述:

   C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了。A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况。由于采取了某种先进的监测手段,所以每个工兵营地的人数C国都掌握的一清二楚,每个工兵营地的人数都有可能发生变动,可能增加或减少若干人手,但这些都逃不过C国的监视。 中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的. 

 

输入:

第一行一个整数T,表示有T组数据。
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令

输出:

对第i组数据,首先输出“Case i:”和回车, 对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。

样例输入:

1
10
1 2 3 4 5 6 7 8 9 10
Query 1 3
Add 3 6
Query 2 7
Sub 10 2
Add 6 3
Query 3 10
End 

样例输出:

Case 1:
6
33
59

当我在没有学到树形数组之前,我只想过一个词——暴搜(虽然这是学过之后才做的

好了,回归正题。

引申

首先,我们来介绍树形数组。

树形数组是一种数据结构,它是在原数组之上,构建一种树形的结构,使查找或是求和时使时间复杂度为O(1)。

其中C数组即为原数组A的树形数组(看起来挺像一棵树)。

到了现在,我们一定是懵逼的,为什么C[1]对应A[1],而C[2]对应A[2]和C[1],C[3]为A[3]?

现在,我们就要介绍树形数组的第一个函数了——lowbit!

int lowbit(int x)
{
    return x & -x;
}

位运算什么的都是浮云。

如果还对位运算不够熟悉,百度

现在你知道了lowbit的作用了吧。

即为数组在前进到下一个时,需要前进的数,这样我们就知道树形数组的结构了。可是如何修改树形数组的各个值呢?

现在我们就引出下一个函数update!

void update(int k,int x)
{
    for(int i=k;i<=n;i+=lowbit(i))
        c[i]+=x;//c为树形数组
}

k为我们访问时的起点,x为我们需要添加的值。

从K开始,我们就加上lowbit(即为我们前进的数)到下一个地址进行修改。

很简单是吧?

思路

好了,回归正题。

Add和Sub其实就是update的中文描述。

Add中的j为正数,Sub中的j为负数。i为k(就是开始的地址)。

现在,Add和Sub解决了,还差一个Query了。为了AC的时间长度变短,我们又引入一个概念——前缀和。

前缀和即是数组B[i]存储原数组A[1]~A[i]的和。

可是有一个疑问,如何从树形数组中得到前缀和?

我们还要引入一个函数——sum

int sum(int k)
{
    int sumnum=0;
    for(int i=k;i>0;i-=lowbit(i))
        sumnum+=c[i];
    return sumnum;
}

在之前我们有update,update为从现在向前走,而sum为从现在向后走,这样我们就有了之前的值了。

这样当我们在解决Query时,只需要用sum(j)-sum(i-1)了(因为我们是区间i至j的和,所以是用j的前缀和减i-1的前缀和)。

当然这一题的方法不止这一种,还有一个线段树的东西。

这样整个题大体解决了,上代码:

#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
int c[50005],m,n,t;
int lowbit(int x)
{
    return x & -x;
}
void update(int k,int x)
{
    for(int i=k;i<=n;i+=lowbit(i))
        c[i]+=x;
}
int sum(int k)
{
    int sumnum=0;
    for(int i=k;i>0;i-=lowbit(i))
        sumnum+=c[i];
    return sumnum;
}
int main()
{
    scanf("%d",&t);
    int p=0;
    while(p<t)
    {
        p++;
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&m);
            update(i,m);
        }
        char y[15];
        int x1,x2,ans[400005],lena=0;
        while(~scanf("\n%s",y))
        {
            if(y[0]=='E')
                break;
            scanf("%d %d",&x1,&x2);
            if(y[0]=='Q')
            {
                lena++;
                ans[lena]=sum(x2)-sum(x1-1);
            }
            if(y[0]=='A')
            {
                update(x1,x2);
            }
            if(y[0]=='S')
            {
                update(x1,-x2);
            }
        }
        printf("Case %d:\n",p);
        for(int i=1;i<=lena;i++)
            printf("%d\n",ans[i]);
        memset(c,0,sizeof(c));
    }
    return 0;
}

 

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 技术工厂 设计师:CSDN官方博客 返回首页