LangChain开发(九)基于Rag实现文档问答

关联阅读

LangChain开发(一)LangChain介绍和对话demo

LangChain开发(二)LangChain提示词模板Template使用

LangChain开发(三)工作流编排(LCEL)

LangChain开发(四)服务监控(LangSmith、verbose、debug)

LangChain开发(五)消息管理与聊天历史存储

LangChain开发(六)多模态输入与自定义输出

LangChain开发(七)自定义输出格式(JSON/XML/YAML)

LangChain开发(八)自定义工具调用

Rag是什么?

大语言模型所实现的最强大的应用之一是复杂的问答(Q&A)聊天机器人。这些应用能够回答关于特定源信息的问题。这些应用使用一种称为检索增强生成(RAG)的技术。

RAG是一种用额外数据增强大语言模型知识的技术。

大语言模型可以对广泛的主题进行推理,但它们的知识仅限于训练时截止日期前得公开数据。如果你想构建能够对私有数据或模型截止日期后引入的数据进行推理的人工智能应用,你需要用特定信息来增强模型的知识。检索适当信息并将其插入模型提示的过程被称为检索增强生成(RAG)。

LangChain有许多组件旨在帮助构建问答应用,以及更广泛的RAG应用。

image-20250325223556633

Rag工作流

一个典型的RAG应用有两个主要组成部分:

索引(Indexing):从数据源获取数据并建议索引的管道(pipeline)。这通常再离线状态下进行。

检索和生成(Retrieval and generation):实际的RAG链,在运行时接受用户查询,从索引中检索相关数据,然后将其传递给模型。

从原始数据到答案最常见完整顺序如下:

索引(Indexing)

  1. 加载(Load):首先我们需要加载数据。这是通过文档加载器Document Loaders完成的。
  2. 分割(Split): 文本分割器Text splitters 将大型文档(Documents)分割为更小的块(chunks)。这对于索引数据和将其传递给模型都很有用,因为大块数据很难搜索,而且不适合大模型有限的上下文窗口。
  3. 存储(Store):我们需要一个地方来存储和索引我们的分割(splits),以便后续可以对其进行搜索。这通常使用向量存储VectorStore和嵌入模型Embedding model来完成。

image-20250325225201993

检索和生成(Retrieval and generation)

  1. 检索(Retrieve):给定用户输入,使用检索器Retriever从存储中检索相关的文本片段。
  2. 生成(Generate):ChatModel使用包含问题和检索到的数据的提示来生成答案。

image-20250325225549810

文档问答

实现流程

一个RAG程序的APP主要有以下流程:

  1. 用户在RAG客户端上传一个pdf文件
  2. 服务器端接受客户端文件,存储在服务端
  3. 服务器端程序对文件进行读取
  4. 对文件内容进行拆分,防止一次性塞给Embedding模型超token限制
  5. 把Embedding后的内容存储在向量数据库,生成检索器
  6. 程序准备就绪,允许用户进行体温
  7. 用户提出问题,调用检索器检索文档,把相关片段找出来后,给大模型,大模型组织后,回复用户。

image-20250325230038738

代码实现

使用Streamlit实现文件上传,这里只实现了pdf和txt文件上传,可以在type参数里面设置多个文件类型,在后面的检索器方法里面针对每个类型进行处理即可。

import os  
import tempfile  
import streamlit as st  
from langchain.chat_models import ChatOpenAI  
from langchain.document_loaders import PyPDFLoader  
from langchain.memory import ConversationBufferMemory  
from langchain.memory.chat_message_histories import StreamlitChatMessageHistory  
from langchain.embeddings import HuggingFaceEmbeddings  
from langchain.callbacks.base import BaseCallbackHandler  
from langchain.chains import ConversationalRetrievalChain  
from langchain.vectorstores import DocArrayInMemorySearch  
from langchain.text_splitter import RecursiveCharacterTextSplitter  
# pip install langchain
# pip install langchain-openai
# pip install langchain_community
# pip install sentence-transformers
# pip install docarray
# pip install pypdf
# 参考源码地址 https://github.com/langchain-ai/streamlit-agent/blob/634e1cecf23d7ca3a4c5e708944673e057765b2a/streamlit_agent/chat_with_documents.py  
st.set_page_config(page_title="PDF文档问答", page_icon="🦜")  
st.title("🦜 PDF文档问答")  
  
  
@st.cache_resource(ttl="1h")  
def configure_retriever(uploaded_files):  
    # Read documents  
    docs = []  
    temp_dir = tempfile.TemporaryDirectory()  
    for file in uploaded_files:  
        temp_filepath = os.path.join(temp_dir.name, file.name)  
        with open(temp_filepath, "wb") as f:  
            f.write(file.getvalue())  
        loader = PyPDFLoader(temp_filepath)  
        docs.extend(loader.load())  
  
    # Split documents  
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=200)  
    splits = text_splitter.split_documents(docs)  
  
    # Create embeddings and store in vectordb  
    embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")  
    vectordb = DocArrayInMemorySearch.from_documents(splits, embeddings)  
  
    # Define retriever  
    retriever = vectordb.as_retriever(search_type="mmr", search_kwargs={"k": 2, "fetch_k": 4})  
  
    return retriever  
  
  
class StreamHandler(BaseCallbackHandler):  
    def __init__(self, container: st.delta_generator.DeltaGenerator, initial_text: str = ""):  
        self.container = container  
        self.text = initial_text  
        self.run_id_ignore_token = None  
  
    def on_llm_start(self, serialized: dict, prompts: list, **kwargs):  
        # Workaround to prevent showing the rephrased question as output  
        if prompts[0].startswith("Human"):  
            self.run_id_ignore_token = kwargs.get("run_id")  
  
    def on_llm_new_token(self, token: str, **kwargs) -> None:  
        if self.run_id_ignore_token == kwargs.get("run_id", False):  
            return  
        self.text += token  
        self.container.markdown(self.text)  
  
  
class PrintRetrievalHandler(BaseCallbackHandler):  
    def __init__(self, container):  
        self.status = container.status("**Context Retrieval**")  
  
    def on_retriever_start(self, serialized: dict, query: str, **kwargs):  
        self.status.write(f"**Question:** {query}")  
        self.status.update(label=f"**Context Retrieval:** {query}")  
  
    def on_retriever_end(self, documents, **kwargs):  
        for idx, doc in enumerate(documents):  
            source = os.path.basename(doc.metadata["source"])  
            self.status.write(f"**Document {idx} from {source}**")  
            self.status.markdown(doc.page_content)  
        self.status.update(state="complete")  
  
  
openai_api_key = os.getenv("DASHSCOPE_API_KEY")  
  
uploaded_files = st.sidebar.file_uploader(  
    label="上传PDF文件", type=["pdf"], accept_multiple_files=True  
)  
if not uploaded_files:  
    st.info("上传PDF文档后使用")  
    st.stop()  
  
retriever = configure_retriever(uploaded_files)  
  
# Setup memory for contextual conversation  
msgs = StreamlitChatMessageHistory()  
memory = ConversationBufferMemory(memory_key="chat_history", chat_memory=msgs, return_messages=True)  
  
# Setup LLM and QA chain  
llm = ChatOpenAI(  
    api_key=os.getenv("DASHSCOPE_API_KEY"),  
    base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",  
    model="qwen-turbo"  
)  
qa_chain = ConversationalRetrievalChain.from_llm(  
    llm, retriever=retriever, memory=memory, verbose=True  
)  
  
if len(msgs.messages) == 0 or st.sidebar.button("Clear message history"):  
    msgs.clear()  
    msgs.add_ai_message("How can I help you?")  
  
avatars = {"human": "user", "ai": "assistant"}  
for msg in msgs.messages:  
    st.chat_message(avatars[msg.type]).write(msg.content)  
  
if user_query := st.chat_input(placeholder="Ask me anything!"):  
    st.chat_message("user").write(user_query)  
  
    with st.chat_message("assistant"):  
        retrieval_handler = PrintRetrievalHandler(st.container())  
        stream_handler = StreamHandler(st.empty())  
        response = qa_chain.run(user_query, callbacks=[retrieval_handler, stream_handler])

安装完依赖后,使用以下命令启动

streamlit run .\11-rag\01-chat_with_documents.py

文档内容

公司休假制度

员工每年有多少天年假?
员工每年享有15天的带薪年假,具体天数根据工龄有所调整。

病假如何申请?
员工需提供医生证明,并通过人力资源部门的审批流程申请病假。

法定节假日有哪些?
公司遵循国家规定的法定节假日,包括春节、国庆节、中秋节等。

公司福利
公司提供哪些保险福利?公司为员工提供五险一金,包括养老保险、医疗保险、失业保险、工伤保险、生育保险和住房公积金

是否有员工健康体检?
公司每年为员工安排一次免费的健康体检

有哪些员工活动或俱乐部?公司定期组织团建活动,并有多个兴趣俱乐部,如球、书法、摄影等

公司规章制度

工作时间如何安排?
正常工作时间为周一至周五,上午9:00至下午6:00,每周工作40小时:

使用界面

image-20250326215532711

源码地址

https://github.com/lys1313013/langchain-example/tree/main/11-rag

参考资料

https://github.com/langchain-ai/streamlit-agent/blob/634e1cecf23d7ca3a4c5e708944673e057765b2a/streamlit_agent/chat_with_documents.py

### RAG 架构的实现方法 #### 核心组件概述 RAG(Retrieval-Augmented Generation,检索增强生成)是一种结合了检索模块和生成模型的方法。其实现主要由三个核心部分组成:文档向量化、相似度搜索以及大语言模型的回答生成。 #### 文档向量化 为了使文本能够被有效检索,首先需要将其转化为数值形式以便计算相似度。这一过程通常借助预训练的语言模型完成。例如,在实际应用中可以采用 Sentence-BERT 或其他类似的嵌入模型来生成高质量的语义向量[^3]。这些向量捕捉到了输入文本中的深层含义,使得后续阶段能更精准地匹配相关内容。 ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('all-MiniLM-L6-v2') documents = ["This is a document.", "That is another one."] embeddings = model.encode(documents) print(embeddings.shape) # 输出形状应为 (n, d),其中 n 是文档数量,d 是维度大小 ``` #### 相似度搜索 有了上述步骤产生的高维特征表示之后,则需设计高效的机制从中找出最接近查询请求的内容片段作为上下文提供给下游任务使用。这里推荐利用 FAISS 或 Annoy 等专门针对大规模近邻查找优化过的库来进行加速操作。它们能够在保持较高召回率的同时显著降低时间开销,非常适合处理海量数据集场景下的实时交互需求。 ```python import faiss import numpy as np index = faiss.IndexFlatL2(embeddings.shape[1]) # 创建 L2 距离索引 index.add(np.array(embeddings)) # 添加嵌入至索引 query_embedding = model.encode(["What are the documents about?"]) distances, indices = index.search(query_embedding.reshape(1,-1), k=2) for i in range(len(indices)): print(f"Document {indices[i]} with distance {distances[i]}") ``` #### 大语言模型集成 最后一步便是调用强大的预训练LLMs如GPT系列或者T5等根据前面筛选出来的几个最佳候选结果重新构建完整的回复内容[^1]。此过程中还可以加入额外控制信号比如风格偏好之类的参数进一步提升用户体验满意度。 ```python from langchain.llms import OpenAI llm = OpenAI(model_name="text-davinci-003", temperature=0) context = "" for idx in indices.flatten(): context += f"{documents[idx].strip()}\n" prompt = f"""Answer based on this information:\n{context}""" response = llm(prompt=prompt).strip() print(response) ``` 通过以上介绍可以看出整个工作流涵盖了从原始资料准备到最后输出呈现等多个环节,并且每一个单独的部分都可以依据具体项目要求灵活调整配置选项达到理想效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

丶只有影子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值