- 博客(23)
- 收藏
- 关注
原创 常微分方程组-龙格库塔法
二阶龙格库塔法的思想及推导如下图所示,使用tn及tn+1两点处导数的平均值,且将tn+1处的导数值利用简单欧拉法代替,得到如下图中的公式。
2024-06-12 16:32:39 235
原创 常微分方程(组)-简单欧拉法
在使用简单欧拉法进行数值积分时,误差是会累积的,设一次计算的误差为。在[0, T]上取N个小区间,每个小区间长度为。,若在[0 1]区间上进行计算,则计算次数为。,而在代码中步长的选取是非常小的。,二者相乘,最终误差为步长。
2024-06-11 20:26:32 346
原创 数学建模——整数规划
0-1型整数规划是整数规划中的特殊情形,它的变量x仅取值0或1,称其为0-1变量或二进制变量。在实际问题中,如果引入0-1变量,就可以把有各个情况需要分别讨论的数学规划问题统一在一个问题中讨论了。求解方法可分为:1分支定界法,2割平面法,2隐枚举法,4匈牙利法,5蒙特卡罗法。数学规划中的变量(部分或全部)限制为整数时,称为整数规划,前者为完全整数规划,后者为混合整数规划。整数规划由于限制变量为整数而增加了难度,但又由于整数解是有限个,为枚举法提供了方便。
2024-06-06 09:07:01 224
原创 Matlab中disp与fprintf
其可以是字符数组,也可以是数字数组,但不能能够是数字+字符,虽然采用元胞数组的方式不会出错,但与想要打印的东西会不符。fprintf函数的功能也是将内容打印在命令行,但其输出形式有所不同,可以同时输出数字与字符串。其会在命令行输出' '内的内容,并将%d%s这些依次替换为后面的量。其作用是将X在命令行窗口打印出来,
2024-06-04 14:56:17 334
原创 线性方程组——高斯消元法
实际上,在Matlab中的运算符已经集成了矩阵运算(Matlab以矩阵作为基本数据类型的特点)。其中左除运算即可以求解一般的线性方程组。Ax = b,x = A\b或x = inv(A)*b。高斯消元法过程为“先前消元,向后回带”,具体的流程如下图所示。但我们主要讲述的是几种解法的思想。
2024-05-28 10:15:25 231
原创 方程求根——开方法
开方法与划界法相比,仅仅需要一个或两个初始值,并不要求包含根的区间。这样,有时该方法会发散,随着计算的推进会越来越远离真正的根,但当开方法收敛时,其会比划界法的收敛速度快得多。此为改进割线法,它既具有牛顿-拉弗森方法的高效性,又不需要计算导数。
2024-05-24 18:05:12 191 1
原创 求根:划界法
二分法的思想是:计算区间中点处的函数值,函数值与哪个区间端点处的函数值具有相同的符号,则使用中点取代此端点,形成新的区间,如此不断迭代。划界法一个典型的特定是,在进行算法之前,需要给出一个区间,在此区间之内函数连续且存在且只存在一个根。试位法又称为线性插值法,其思想是使用通过区间两端的直线与x轴的交点作为新的估计值。试位法与二分法相比,除了计算x新值的公式不同之外其余步骤完全相同。可以看出,迭代21次结束循环,求得的解为142.7377。试位法迭代29次得到了与二分法几乎相同的结果。
2024-05-24 17:03:24 323 1
原创 用Matlab计算数值微分
输入一个长度为n的向量,返回一个长度为n的向量,返回向量的第一个值为输入向量前两个值之差除以数据点间距,返回向量的最后一个值为输入向量的最后两个值之差除以数据点间距(请注意:diff(y)/diff(x)求得的是每个小区间中点处的导数(且为中心差分格式),在代码中画图部分使用xm作为横坐标也正是其体现。如果输入一个长度为n的一维向量,diff函数返回一个长度为n-1的向量,其中包含原向量相邻元素的差。fx对应于x方向(列)的差值,fy对应于y方向(行)的差值,h为数据点之间的间距。
2024-05-24 16:07:48 754
原创 理查森外推法——龙贝格积分
根据积分估计值本身,可以构造出方法来改进数值积分的结果。这些方法一般被称为理查森外推法。其中I为积分精确值,I(h)为积分近似值,E为截断误差。
2024-05-20 17:01:01 310 1
原创 数值积分——牛顿-科特斯公式
在整个区间应用一次牛顿-斯科特公式精度较低,常用的方法是将a~b积分区间分成很多小区间,在每个小区间上应用牛顿-斯科特公式,称为复合斯科特公式。关于积分的基础知识,本文不再赘述。辛普森法则(辛普森1/3法则(二次多项式)、辛普森3/8法则(三次多项式));可使用复合梯形法则/复合辛普森法则,但无法得出最后的公式,而是通过循环在每一个小区间进行积分。此函数用于计算累积积分,z为向量,其元素z(k)是从x(1)到x(k)的积分值。一般将辛普森1/3法则和辛普森3/8法则结合使用以应对奇数个区间的情况。
2024-05-20 15:14:33 508 1
原创 样条和分段插值
二次样条也存在其自身的缺点,我们直接跳过,介绍三次样条,它是实际中最常用的样条。如图所示,给定n个数据点,将区间分成n-1份,每个小区间i都对应一个样条函数si(x)。同理还有一次样条、二次样条,但我们接下来会介绍三次样条的优越性。多项式插值对n个数据点采用n-1阶多项式进行插值,该多项式曲线能够捕捉数据点的所有变化,但。此外,四次或更高次的样条表现出高次多项式本身固有的不稳定性。给定n个数据点,共有n-1个区间,需要确定4(n-1)个未知系数。,在两个样条的交点处,它的斜率发生了剧烈的变化。
2024-05-14 17:57:42 1803 2
原创 多项式插值——牛顿多项式插值
当我们有x = [300 400 500];与之前讨论过的最小二乘拟合相比:1、数据最好的精确的,因为插值多项式通过每一个数据点,每一个数据点对差值结果影响都很大;2、y误差不要求为高斯分布,事实上,对y的要求是尽量精确,对误差分布不做要求。时,此时我们使用函数拟合(关于为什么要远大于,涉及保证方程组有唯一解的问题,此处不展开讨论)。当数据点比较少时,我们使用插值,使得我们所得到的拟合多项式通过我们的每一个数据点。在现实中,我们只可能测得有限个数据点,从而根据有限个数据点去预测没有测量处的值,当测量的。
2024-05-10 09:29:43 318
原创 线性(最小二乘)回归
线性最小二乘回归的目的是用直线拟合一组成对出现的观测值:直线的数学表示为:和表示截距和斜率;是模型和观测值之间的误差或残差,。
2024-05-06 16:56:30 335
原创 MathType编辑公式时一直显示{EMBED Equation.DSMT4}
word域是引导Word在文档中自动插入文字、图形、页码或其他信息的一组代码。每个域都有一个唯一的名字,它具有的功能与Excel中的函数非常相似。由其定义可知,当出现涉及自动页码、自动编号(图形)、公式插入、目录生成出现。,大概率是勾选了“显示与代码而非值域”选项。
2024-04-18 11:22:06 1084 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人