第5章 数据预处理
- 常见的不规整数据主要有缺失数据、重复数据、异常数据几种,在开始正式的数据分析之前,我们需要先把这些不太规整的数据处理掉。
5.1 缺失值处理
- 缺失值就是由某些原因导致部分数据为空,对于为空的这部分数据我们一般有两种处理方式,一种是删除,即把含有缺失值的数据删除;另一种是填充,即把缺失的那部分数据用某个值代替。
5.1.1 缺失值查看
df = pd.read_excel(r"D:\PythonFlie\test.xlsx")
df.info()
-
输出结果
-
isnull()方法来判断哪个值是缺失值,如果是缺失值则返回True,如果不是缺失值则返回False。
df.isnull()
- 输出结果
编号 年龄 性别 注册时间
0 False False False False
1 False False False False
2 False False True False
3 False False False False
4 False False False False
5 False False False False
6 False False False False
7 False False False False
5.1.2 缺失值删除
- 缺失值分为两种,一种是一行中某个字段是缺失值;另一种是一行中的字段全部为缺失值,即为一个空白行。
- dropna()方法,dropna()方法默认删除含有缺失值的行,也就是只要某一行有缺失值就把这一行删除。
df = pd.read_excel(r"D:\PythonFlie\test.xlsx")
df
- 输出结果
编号 年龄 性别 注册时间
0 A1 54.0 男 2018-10-01
1 A2 16.0 女 2018-10-02
2 A3 47.0 NaN 2018-10-03
3 A4 41.0 男 2018-10-04
4 A1 54.0 男 2018-10-01
5 NaN NaN NaN NaT
6 A2 16.0 女 2018-10-02
7 A3 47.0 女 2018-10-03
8 A4 41.0 男 2018-10-04
df.dropna()
- 输出结果
编号 年龄 性别 注册时间
0 A1 54.0 男 2018-10-01
1 A2 16.0 女 2018-10-02
3 A4 41.0 男 2018-10-04
4 A1 54.0 男 2018-10-01
6 A2 16.0 女 2018-10-02
7 A3 47.0 女 2018-10-03
8 A4 41.0 男 2018-10-04
- 运行dropna()方法以后,删除含有NaN值的行,返回删除后的数据。
- 如果想删除空白行,只要给dropna()方法传入一个参数how = "all"即可,这样就会只删除那些全为空值的行,不全为空值的行就不会被删除。
df.dropna(how = "all")
- 输出结果
编号 年龄 性别 注册时间
0 A1 54.0 男 2018-10-01
1 A2 16.0 女 2018-10-02
2 A3 47.0 NaN 2018-10-03
3 A4 41.0 男 2018-10-04
4 A1 54.0 男 2018-10-01
6 A2 16.0 女 2018-10-02
7 A3 47.0 女 2018-10-03
8 A4 41.0 男 2018-10-04
5.1.3 缺失值填充
- 上面介绍了缺失值的删除,但是数据是宝贵的,一般情况下只要数据缺失比例不是过高(不大于30%),尽量别删除,而是选择填充。
- 除了用0填充、平均值填充、众数(大多数)填充,还有向前填充(即用缺失值的前一个非缺失值填充)
- 在Python中,我们利用的fillna()方法对数据表中的所有缺失值进行填充,在fillna后面的括号中输入要填充的值即可。
df.fillna(0)
- 输出结果
编号 年龄 性别 注册时间
0 A1 54.0 男 2018-10-01 00:00:00
1 A2 16.0 女 2018-10-02 00:00:00
2 A3 47.0 0 2018-10-03 00:00:00
3 A4 41.0 男 2018-10-04 00:00:00
4 A1 54.0 男 2018-10-01 00:00:00
5 0 0.0 0 0
6 A2 16.0 女 2018-10-02 00:00:00
7 A3 47.0 女 2018-10-03 00:00:00
8 A4 41.0 男 2018-10-04 00:00:00
- 在 Python 中我们也可以按不同列填充,只要在 fillna()方法的括号中指明列名即可。
df.fillna({"性别":"男"})
- 输出结果
编号 年龄 性别 注册时间
0 A1 54.0 男 2018-10-01
1 A2 16.0 女 2018-10-02
2 A3 47.0 男 2018-10-03
3 A4 41.0 男 2018-10-04
4 A1 54.0 男 2018-10-01
5 NaN NaN 男 NaT
6 A2 16.0 女 2018-10-02
7 A3 47.0 女 2018-10-03
8 A4 41.0 男 2018-10-04
- 同时对多列填充不同的值
df.fillna({"性别":"男","年龄":"30"})
- 输出结果
编号 年龄 性别 注册时间
0 A1 54.0 男 2018-10-01
1 A2 16.0 女 2018-10-02
2 A3 47.0 男 2018-10-03
3 A4 41.0 男 2018-10-04
4 A1 54.0 男 2018-10-01
5 NaN 30 男 NaT
6 A2 16.0 女 2018-10-02
7 A3 47.0 女 2018-10-03
8 A4 41.0 男 2018-10-04
5.2 重复值处理
- 重复数据就是同样的记录有多条,对于这样的数据我们一般做删除处理
- 在Python中我们利用drop_duplicates()方法,该方法默认对所有值进行重复值判断,且默认保留第一个(行)值
df.drop_duplicates()
- 输出结果
编号 年龄 性别 注册时间
0 A1 54.0 男 2018-10-01
1 A2 16.0 女 2018-10-02
2 A3 47.0 NaN 2018-10-03
3 A4 41.0 男 2018-10-04
5 NaN NaN NaN NaT
7 A3 47.0 女 2018-10-03
- 上面的代码是针对所有字段进行的重复值判断,我们同样也可以只针对某一列或某几列进行重复值删除的判断,只需要在drop_duplicates()方法中指明要判断的列名即可。
df.drop_duplicates(subset="编号")
- 输出结果
编号 年龄 性别 注册时间
0 A1 54.0 男 2018-10-01
1 A2 16.0 女 2018-10-02
2 A3 47.0 NaN 2018-10-03
3 A4 41.0 男 2018-10-04
5 NaN NaN NaN NaT
- 也可以利用多列去重,只需要把多个列名以列表的形式传给参数subset即可
df.drop_duplicates(subset=["编号","性别"])
- 输出结果
编号 年龄 性别 注册时间
0 A1 54.0 男 2018-10-01
1 A2 16.0 女 2018-10-02
2 A3 47.0 NaN 2018-10-03
3 A4 41.0 男 2018-10-04
5 NaN NaN NaN NaT
7 A3 47.0 女 2018-10-03
- 还可以自定义删除重复项时保留哪个,默认保留第一个,也可以设置保留最后一个,或者全部不保留。
- 通过传入参数keep进行设置,参数keep默认值是first,即保留第一个值;也可以是last,保留最后一个值;还可以是False,即把重复值全部删除。
df.drop_duplicates(subset=["编号","性别"],keep = "last")
- 输出结果
编号 年龄 性别 注册时间
2 A3 47.0 NaN 2018-10-03
4 A1 54.0 男 2018-10-01
5 NaN NaN NaN NaT
6 A2 16.0 女 2018-10-02
7 A3 47.0 女 2018-10-03
8 A4 41.0 男 2018-10-04
df.drop_duplicates(subset=["编号","性别"],keep = False)
- 输出结果
编号 年龄 性别 注册时间
2 A3 47.0 NaN 2018-10-03
5 NaN NaN NaN NaT
7 A3 47.0 女 2018-10-03
5.3 异常值的检测与处理
- 异常值就是相比正常数据而言过高或过低的数据
5.3.1 异常值检测
- 要处理异常值首先要检测,也就是发现异常值,发现异常值的方式主要有以下三种。
- 根据业务经验划定不同指标的正常范围,超过该范围的值算作异常值。
- 通过绘制箱形图,把大于(小于)箱形图上边缘(下边缘)的点称为异常值。
- 如果数据服从正态分布,则可以利用3σ 原则;如果一个数值与平均值之间的偏差超过3倍标准差,那么我们就认为这个值是异常值。
5.3.2 异常值处理
- 对于异常值一般有以下几种处理方式。
- 最常用的处理方式就是删除。
- 把异常值当作缺失值来填充。
- 把异常值当作特殊情况,研究异常值出现的原因。
- 在Python中,删除异常值用到的方法和Excel中的方法原理类似,Python中是通过过滤的方法对异常值进行删除。比如 df 表中有年龄这个指标,要把年龄大于200的值删掉,你可以通过筛选把年龄不大于200的筛出来,筛出来的部分就是删除大于200的值以后的新表。
- 对异常值进行填充,就是对异常值进行替换,利用replace()方法可以对特定的值进行替换。
- 关于数据筛选和数据替换会在接下来的章节介绍。
5.4 数据类型转换
5.4.1 数据类型
- Pandas不像Excel分得那么详细,它主要有6种数据类型,如下表所示
类型 | 说明 |
---|---|
int | 整型数,即整数 |
float | 浮点数,即含有小数点的数 |
object | python对象类型,用o表示 |
string | 字符串类型,经常用S表示,S10表示长度为10的字符串 |
unicode | 固定长度的unicode类型,跟字符串定义方式一样 |
datetime64[ns] | 表示时间格式 |
- 在 Python 中,不仅可以用 info()方法获取每一列的数据类型,还可以通过 dtype方法来获取某一列的数据类型。
5.4.2 类型转换
- 在Python中,我们利用astype()方法对数据类型进行转换,astype后面的括号里指明要转换的目标类型即可。
df["年龄"].astype("int64")
- 输出结果
0 54
1 16
2 47
3 41
4 54
5 16
6 47
7 41
Name: 年龄, dtype: int64
5.5 索引设置
- 索引是查找数据的依据,设置索引的目的是便于我们查找数据。
5.5.1 为无索引表添加索引
- 在Python中,如果表没有索引,会默认用从0开始的自然数做索引
import pandas as pd
df = pd.read_excel(r"D:\PythonFlie\test_1.xlsx",header=None)
df
- 输出结果
0 1 2 3
0 A1 张旭 101 2018-10-01
1 A2 李刚 102 2018-10-02
2 A3 孙峰 103 2018-10-03
3 A4 赵恒 104 2018-10-04
4 A5 赵恒 104 2018-08-12
- 通过给表df的columns参数传入列索引值,index参数传入行索引值达到为无索引表添加索引的目的
df.columns = ["订单编号","客户姓名","唯一识别码","交易日期"]
df
- 输出结果
订单编号 客户姓名 唯一识别码 交易日期
0 A1 张旭 101 2018-10-01
1 A2 李刚 102 2018-10-02
2 A3 孙峰 103 2018-10-03
3 A4 赵恒 104 2018-10-04
4 A5 赵恒 104 2018-08-12
df.index = [1,2,3,4,5]
df
- 输出结果
订单编号 客户姓名 唯一识别码 交易日期
1 A1 张旭 101 2018-10-01
2 A2 李刚 102 2018-10-02
3 A3 孙峰 103 2018-10-03
4 A4 赵恒 104 2018-10-04
5 A5 赵恒 104 2018-08-12
5.5.2 重新设置索引
- 在Python中可以利用set_index()方法重新设置索引列,在set_index()里指明要用作行索引的列的名称即可。
df.set_index("订单编号")
- 输出结果
客户姓名 唯一识别码 交易日期
订单编号
A1 张旭 101 2018-10-01
A2 李刚 102 2018-10-02
A3 孙峰 103 2018-10-03
A4 赵恒 104 2018-10-04
A5 赵恒 104 2018-08-12
- 在重新设置索引时,还可以给 set_index()方法传入两个或多个列名,我们把这种一个表中用多列来做索引的方式称为层次化索引,层次化索引一般用在某一列中含有多个重复值的情况下。
5.5.3 重命名索引
- 在Python中重命名索引,我们利用的是rename()方法,在rename后的括号里指明要修改的行索引及列索引名。
df.rename(columns = {"订单编号":"新订单编号","客户姓名":"新客户姓名"})
- 输出结果
新订单编号 新客户姓名 唯一识别码 交易日期
1 A1 张旭 101 2018-10-01
2 A2 李刚 102 2018-10-02
3 A3 孙峰 103 2018-10-03
4 A4 赵恒 104 2018-10-04
5 A5 赵恒 104 2018-08-12
df.rename(columns = {"订单编号":"新订单编号","客户姓名":"新客户姓名"},
index = {1:"一",2:"二",3:"三",4:"四",5:"五"})
- 输出结果
新订单编号 新客户姓名 唯一识别码 交易日期
一 A1 张旭 101 2018-10-01
二 A2 李刚 102 2018-10-02
三 A3 孙峰 103 2018-10-03
四 A4 赵恒 104 2018-10-04
五 A5 赵恒 104 2018-08-12
5.5.4 重置索引
- 重置索引主要用在层次化索引表中,重置索引是将索引列当作一个columns进行返回。
- 在Python利用的是reset_index()方法
df.reset_index(leve = None,drop = False,inplace = False)
- level参数用来指定要将层次化索引的第几级别转化为columns,第一个索引为0级,第二个索引为1级,默认为全部索引,即默认把索引全部转化为columns。
- drop参数用来指定是否将原索引删掉,即不作为一个新的columns,默认为False,即不删除原索引。
- inplace参数用来指定是否修改原数据表。
- reset_index()方法常用于数据分组、数据透视表中。