1e11内质数的个数

输出 n 以内的质数数量,n 可到 1e11

#include<cstdio>
#include<cmath>

using namespace std;
#define LL long long
const int N = 5e6 + 2;
bool np[N];
int prime[N], pi[N];

int getprime() {
    int cnt = 0;
    np[0] = np[1] = true;
    pi[0] = pi[1] = 0;
    for (int i = 2; i < N; ++i) {
        if (!np[i]) prime[++cnt] = i;
        pi[i] = cnt;
        for (int j = 1; j <= cnt && i * prime[j] < N; ++j) {
            np[i * prime[j]] = true;
            if (i % prime[j] == 0) break;
        }
    }
    return cnt;
}

const int M = 7;
const int PM = 2 * 3 * 5 * 7 * 11 * 13 * 17;
int phi[PM + 1][M + 1], sz[M + 1];

void init() {
    getprime();
    sz[0] = 1;
    for (int i = 0; i <= PM; ++i) phi[i][0] = i;
    for (int i = 1; i <= M; ++i) {
        sz[i] = prime[i] * sz[i - 1];
        for (int j = 1; j <= PM; ++j) phi[j][i] = phi[j][i - 1] - phi[j / prime[i]][i - 1];
    }
}

int sqrt2(LL x) {
    LL r = (LL) sqrt(x - 0.1);
    while (r * r <= x) ++r;
    return int(r - 1);
}

int sqrt3(LL x) {
    LL r = (LL) cbrt(x - 0.1);
    while (r * r * r <= x) ++r;
    return int(r - 1);
}

LL getphi(LL x, int s) {
    if (s == 0) return x;
    if (s <= M) return phi[x % sz[s]][s] + (x / sz[s]) * phi[sz[s]][s];
    if (x <= prime[s] * prime[s]) return pi[x] - s + 1;
    if (x <= prime[s] * prime[s] * prime[s] && x < N) {
        int s2x = pi[sqrt2(x)];
        LL ans = pi[x] - (s2x + s - 2) * (s2x - s + 1) / 2;
        for (int i = s + 1; i <= s2x; ++i) ans += pi[x / prime[i]];
        return ans;
    }
    return getphi(x, s - 1) - getphi(x / prime[s], s - 1);
}

LL getpi(LL x) {
    if (x < N) return pi[x];
    LL ans = getphi(x, pi[sqrt3(x)]) + pi[sqrt3(x)] - 1;
    for (int i = pi[sqrt3(x)] + 1, ed = pi[sqrt2(x)]; i <= ed; ++i) ans -= getpi(x / prime[i]) - i + 1;
    return ans;
}

LL lehmer_pi(LL x) {
    if (x < N) return pi[x];
    int a = (int) lehmer_pi(sqrt2(sqrt2(x)));
    int b = (int) lehmer_pi(sqrt2(x));
    int c = (int) lehmer_pi(sqrt3(x));
    LL sum = getphi(x, a) + (LL) (b + a - 2) * (b - a + 1) / 2;
    for (int i = a + 1; i <= b; i++) {
        LL w = x / prime[i];
        sum -= lehmer_pi(w);
        if (i > c) continue;
        LL lim = lehmer_pi(sqrt2(w));
        for (int j = i; j <= lim; j++) sum -= lehmer_pi(w / prime[j]) - (j - 1);
    }
    return sum;
}

int main() {
    init();
    LL n;
    while (~scanf("%lld", &n)) {
           printf("%lld\n", lehmer_pi(n));
    }
    return 0;
}
#include <bits/stdc++.h>

using namespace std;
const int N = 1000010;
typedef long long LL;
namespace Min25 {
    int prime[N], id1[N], id2[N], flag[N], ncnt, m;
    LL g[N], sum[N], a[N], T, n;

    inline int ID(LL x) {
        return x <= T ? id1[x] : id2[n / x];
    }

    inline LL calc(LL x) {
        return x * (x + 1) / 2 - 1;
    }

    inline LL f(LL x) {
        return x;
    }

    inline void init() {
        T = sqrt(n + 0.5);
        for (int i = 2; i <= T; i++) {
            if (!flag[i]) prime[++ncnt] = i, sum[ncnt] = sum[ncnt - 1] + i;
            for (int j = 1; j <= ncnt && i * prime[j] <= T; j++) {
                flag[i * prime[j]] = 1;
                if (i % prime[j] == 0) break;
            }
        }
        for (LL l = 1; l <= n; l = n / (n / l) + 1) {
            a[++m] = n / l;
            if (a[m] <= T) id1[a[m]] = m; else id2[n / a[m]] = m;
            g[m] = calc(a[m]);
        }
        for (int i = 1; i <= ncnt; i++)
            for (int j = 1; j <= m && (LL) prime[i] * prime[i] <= a[j]; j++)
                g[j] = g[j] - (LL) prime[i] * (g[ID(a[j] / prime[i])] - sum[i - 1]);
    }

    inline LL solve(LL x) {
        if (x <= 1) return x;
        return n = x, init(), g[ID(n)];
    }
}

int main() {
    LL n;
    scanf("%lld", &n);
    printf("%lld\n", Min25::solve(n));
}
首先,我们需要澄清一点:在计算机科学中,找到在一秒钟内在所有可能范围内是否存在1e9(即一亿)个回文质数是一个极其复杂的任务,因为质数的数量随数值增长呈指数级增加,而判断一个数是否为质数的时间复杂度通常是O(sqrt(n)),对于大数更是如此。在一秒钟内找出这么多质数几乎是不可能的,尤其是如果还需要检查它们是否是回文。 回文质数是指从前往后读和从后往前读都一样的质数,比如101、131等。由于这个限制,我们通常会寻找较小范围内的回文数字,并逐一检测其是否为质数。要在C++中编写这样的程序,你需要使用一些高效的算法,如埃拉托斯特尼筛法筛选出一定范围内的所有质数,然后再从中挑选回文数。 然而,实际编写这种程序并实现如此大量的查找是超出了常规的编程任务。它需要高级的数据结构优化、并行计算甚至分布式计算技术。如果你的目标是学习原理而不是实际运行,你可以尝试编写一段简单的代码来演示如何找到单个回文质数,然后讨论可能的优化策略。 这里只是一个简化版本的思路: ```cpp #include <iostream> #include <string> bool isPalindrome(int num) { std::string str = std::to_string(num); int start = 0, end = str.length() - 1; while (start < end && str[start] == str[end]) { start++; end--; } return start >= end; } bool isPrime(int num) { if (num <= 1) return false; for (int i = 2; i * i <= num; ++i) { if (num % i == 0) return false; } return true; } int findFirstPalindromePrime(int limit) { for (int i = 2; ; i++) { if (isPalindrome(i) && isPrime(i)) return i; // 如果超过限制就返回 if (i > limit) break; } return -1; // 表示未找到符合条件的数 } int main() { int target = 1e9; // 这里设置一个较大的目标,实际上无法在一秒内完成搜索 int palindromePrime = findFirstPalindromePrime(target); if (palindromePrime != -1) std::cout << "第一个1e9范围内的回文质数是:" << palindromePrime << '\n'; else std::cout << "在一秒钟内无法找到1e9个回文质数。\n"; return 0; } ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值